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s u m m a r y

This article presents an up-to-date review of the state-of-the-art knowledge regarding the effect of sleep
on the anabolic growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis. This axis is involved in
learning and memory and neuroprotection at the central level, and in the crosstalk between sleep and
the immune system, with respect to its anti-inflammatory properties. We also aim to provide insight into
the consequences of sleep loss on cognitive capacities in healthy individuals and patients with
obstructive sleep apnea (OSA), regarding the mechanistic association with the GH/IGF-1 axis. Finally, this
review examines the inflammatory/endocrine pathways that are affected by sleep loss, and which may
consequently interact with the GH/IGF-1 axis.

The deleterious effects of sleep loss include fatigue, and can cause several adverse age-dependent
health outcomes. It is therefore important to improve our understanding of the fundamental physi-
ology underlying these effects in order to better apply non-pharmacological countermeasures (e.g., sleep
strategies, exercise training, continuous positive airway pressure therapy) as well as pharmacological
solutions, so as to limit the deleterious consequences of sleep loss/disorders.

© 2019 Elsevier Ltd. All rights reserved.
Introduction

Sleep is a basic physiological need that is crucial for human life.
In most individuals, sleep occupies between 20 and 40% of a 24-h
day, and serves multiple restorative functions in the body and the
brain. Indeed, sleep improvesmemory recall, regulatesmetabolism,
and reduces mental fatigue, while also playing important roles in
tissue repair, synaptic homeostasis, and immune-inflammatory
control [1e3].

The adverse effects of insufficient sleep and/or sleep disorders
include decreased cognitive abilities, dizziness, fatigue, mood dis-
orders, stress, psychiatric symptoms, accidents and injuries, and
mortality [4e7]. Impaired physical capacities in daily tasks have
also been described, and are sometimes associated with a decrease
in muscular strength [8]. Several sleep transformations that occur
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throughout life are now well-recognized, such as changes in the
amount of time spent in different sleep stages, a phase-advance in
the timing of circadian rhythms occurring in the elderly, and the
observation that insomnia increases with age [9].

Sleep and its different stages are characterized by a specific
neurochemical milieu of neurotransmitters and hormones, and a
pattern of considerable activity in various endocrine systems that
has been studied by both observational and experimental research,
indicating that sleep loss results in changes in hormone secretion.
Sleep is accompanied by a marked increase in growth hormone
(GH), prolactin, and melatonin release, as well as the down-
regulation of the hypothalamic-pituitary-adrenal (HPA) axis and
the sympathetic nervous system (SNS) [10e12]. Consequently,
there is a nocturnal decrease in plasma cortisol, epinephrine and
norepinephrine levels. A rapid increase in plasma thyroid-
stimulating hormone (TSH) levels is also observed in the early
evening, beginning 4e5 h before the habitual bedtime [13]. Sleep
deprivation and sleep restriction have been shown to clearly
disturb endocrine secretions including increased evening concen-
trations of cortisol, and decreased concentrations of the anabolic
hormones testosterone, GH, and the GH-related growth factor IGF-
1 [14e16]. Perturbations to endocrine secretions may influence
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Abbreviations

AHI apnea-hypopnea index
BDNF brain-derived neurotrophic factor
BMI body mass index
cAMP cyclic adenosine monophosphate
CNS central nervous system
CPAP continuous positive airway pressure
CREB cAMP response element binding protein
EPO erythropoietin
GH growth hormone
GHRH growth hormone-releasing hormone
HPA hypothalamic pituitary adrenal
IH intermittent hypoxemia
IL interleukin
IGF-1 insulin-like growth factor 1

IGFBP insulin-like binding protein
LRP1 lipoprotein-related receptor 1
MMP-9 matrix metalloproteinase-9
OAHI obstructive apnea hypopnea index
OSA obstructive sleep apnea
PKA protein kinase A
PWS Prader-Willi syndrome
REM rapid eye movement
SNS sympathetic nervous system
SR chronic sleep restriction
SWS slow-wave sleep
TNF tumor necrosis factor
TSD total sleep deprivation
TSH thyroid stimulating hormone
TST total sleep time
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cognitive functions, and some of these hormones specifically
contribute tomemory consolidation [17,18]. The functionality of the
immune system is additionally altered by acute and chronic sleep
loss, resulting in the sub-clinical production of inflammatory cy-
tokines that are known to be associated with cognitive impair-
ments in healthy, asymptomatic individuals [19].

The effects of sleep and the GH/IGF-1 axis on cognition

Sleep regulation of the GH axis

Growth hormone (GH) plays an essential role in maintaining the
homogeneity of tissues and organs during thenormal development of
thehumanbody, orafter injury. Its effects ongrowthduring childhood
and puberty are partly direct and partly mediated by insulin-like
growth factor I (IGF-1), a polypeptide hormone with endocrine,
paracrine, and autocrine effects that shares structural homology with
insulin. In turn, the IGF-1 transcription factor, which occurs inde-
pendently of GH in many tissues, is dependent on adequate GH
secretion. IGF-1 is primarily secreted by the liver and is transported to
other tissues, thus acting as an endocrine hormone, but it is also
produced inmost (if not all) tissues (including skeletalmuscle and the
brain) and acts locally as a paracrine hormone [20,21]. GH and IGF-1
both play essential roles in controlling somatic growth (including
the stimulation of tissue growth and protein anabolism) and in
regulating multiple physiological processes in humans and other
species. IGF-1 travels in the blood as a complex with insulin-like
binding protein 3 (IGFBP-3) and an “acid labile subunit” chaperone,
which regulates IGF-1 availability to target tissues by coordinating its
release. Neuronal activity drives IGF-1 transport into the Central
Nervous System (CNS) through the stimulation of matrix
metalloproteinase-9 (MMP-9), resulting in the cleavage of IGFBP-3
(which liberates IGF-1) and interaction with the membrane cargo
protein transporter lipoprotein-related receptor 1 (LRP1) [22].

The secretion of GH from the anterior pituitary gland is regu-
lated by complex homeostatic interactions that are mediated by
neural and peripheral influences. GH synthesis and secretion are
under the control of hypothalamic peptides, with stimulation by
growth hormone-releasing hormone (GHRH) and inhibition by
somatostatin [23]. Furthermore, IGF-1 produced in the liver in
response to GH results, via long-loop feedback, in the suppression
of GH release through the stimulation of somatostatin release, as
well as the inhibition of GH and GHRH release. Another stimulus
of GH release is ghrelin, which is mainly secreted by the stomach
[24]. Other hormonal regulators of the GH axis include gluco-
corticoids, gonadal sex hormones, and thyroid hormone. GH
secretion is pulsatile in all species, with a similar pattern in
humans and male rodents. Notably, the 24-h pattern of sponta-
neous GH release changes with age, and the biological roles of GH
vary greatly with age and reproductive status. Throughout pu-
berty, an increase in GH secretion occurs alongside an increase in
circulating IGF-1 levels [25]. Then, starting at 18e25 y of age,
there is an exponential decline in mean 24-h GH concentrations in
men and women, accompanied by a gradual fall in IGF-1 circu-
lating levels, all of which occur regardless of sex hormone levels
[23]. In addition, age and body mass index (BMI) are distinct and
specific correlates of individual attributes of GH secretion and
clearance in men [26]. Finally, strong physiologic stimuli of GH
secretion are sleep and exercise. Exercise is a proven stimulus of
GH release and an acute bout of exercise stimulates a significant
GH pulse [27].

The GH secretion is observed preferentially during slow-wave
sleep (SWS) [10], and GH secretion during the beginning of sleep
appears primarily regulated by GHRH stimulation occurring during
a period of relative somatostatin withdrawal [28]. However it re-
mains difficult to define precisely mechanisms whether sleep
modulates GH secretion. A bidirectional interaction also exists be-
tween the activity of the GH/IGF-1 axis and sleep regulation
[12,28,29]. Indeed, GHRH represents an important sleep-promoting
substance, and it is well-documented that this hormone is essen-
tially controlled by the sleep-wake homeostasis [29]. The impact of
hormones of the somatotropic axis on sleep has been thoroughly
described and is outside of the focus of this review. In normal
adults, the maximal GH secretory burst occurs within minutes after
the first period of slow-wave sleep (SWS) [10,30,31]. When the
sleep cycle is delayed or advanced, GH secretion is consequently
delayed or advanced to coincide with the first episode of sleep, as
well as during repetitive three-hour sleep-wake cycles for 10
d [32,33]. The nocturnal release of GH is minimal or altogether
absent during a night of sleep deprivation, while a robust increase
is observed during the recovery night, and SWS is positively
correlated with GH levels both pre- and post-sleep deprivation
[34,35]. Brandenberger et al. [34] observed that the GH pulses were
more equally distributed throughout the 24 h of sleep deprivation
compared to a night-time sleep condition, with large individual
pulses occurred during the day. Vgontzas et al. [35] found that deep
sleep enhances the activity of the GH axis and has an inhibitory
effect on cortisol levels. During the night of sleep recovery that
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follows total sleep deprivation, SWS has been shown to increase
[36] as well as GH secretion during the first half of the night, and
levels were elevated in the total night after sleep deprivation in
comparison to the baseline night [37]. In contrast, during the first
night of sleep recovery following chronic sleep restriction (4 h in
bed during seven days), SWS increased [16] while 24-h GH levels
were no higher than at the baseline (5.5 h vs. 8.5 h bedtimes during
14 d) [38]. Also, after one night of sleep restriction (mild sleep re-
striction), basal and hypoglycemia-stimulated concentrations of
the counterregulatory GH were unchanged [39]. During aging, the
amount of GH secretion and the duration of SWS markedly
decrease in the same proportion [28]. In male volunteers aged
20e92 y, the nocturnal GH peak values exponentially decreased
with age, while the lowest point for cortisol increased linearly as a
function of age [40]. In this study, age-related changes in the sleep-
dependent secretion of GH and cortisol correlated significantly
with an age-dependent decrease in SWS. The authors suggested
that during aging, changes in GH and cortisol secretion may act
together to reduce anabolic functions of sleep.

Finally, it should be noted that sleep and the GH/IGF-1 axis may
interact in memory, neuroprotection, neurogenesis and neuro-
plasticity, and neurodegenerative diseases [41].

The effects of sleep and the GH/IGF-1 axis on cognitive capacities:
possible mechanistic interactions

Sleep and cognition: the pathways
Cognition refers to a range of mental processes relating to the

acquisition, storage, manipulation, and retrieval of information. It
underpins many daily activities, in health and disease, across the
age span. Cognition can be separated into multiple distinct func-
tions, dependent on particular brain circuits and neuromodulators.
Cognitive assessment refers to the objective measurement of
distinct cognitive abilities, such as working memory, inhibition,
cognitive flexibility, psychomotor speed and sustained attention.

A body of literature suggests that an important function of sleep
is to maintain or enhance cognitive capacities, particularly learning
and memory [18]. Sleep optimizes memory consolidation,
improving the strength and stability of new memories acquired
before sleep [42]. This has been particularly demonstrated in
experimental human sleep deprivation protocols, revealing the
negative consequences on attention and working memory [4].
Moreover, studies have identified positive effects of additional
sleep in the form of daytime naps, even as short as six min, on
learning and declarative memory in non-sleep-deprived subjects
[43,44].

Apart from its beneficial effects on the consolidation of previ-
ously learned memories, sleep also benefits the subsequent
acquisition of new learning memories [45]. The sleepememory
relationship is also influenced by factors such as age [46], gender
and hormonal status [47], and mental health [48].

Emerging evidence suggests a possible role for sleep in the
regulation of adult neurogenesis in relation to brain plasticity, as
well as hippocampus-dependent cognitive functions such as
learning and memory [for review, see: 49,50]. A change in neuro-
genesis could affect these hippocampus-dependent functions. For
example, there is experimental evidence linking decreased neuro-
genesis to impaired learning, particularly regarding the spatial
domain and decreased memory retention [51]. While only a few
studies have shown that periods of increased sleep are associated
with increased cell proliferation or survival, there is strong evi-
dence that chronic restriction of sleep inhibits hippocampal cell
proliferation and in some cases neurogenesis [for review see 52].
Sleep restriction may impair synaptic plasticity and memory pro-
cesses through attenuations of intracellular cyclic adenosine
monophosphate (cAMP)-protein kinase A (PKA) signaling which
may lead to alterations in cAMP response element binding protein
(CREB)-mediated gene transcription, neurotrophic signaling, and
glutamate receptor expression [52].

In rodents, prolonged sleep deprivation reduces hippocampal
cell proliferation and inhibits adult neurogenesis, although this is
not associated with elevated adrenal glucocorticoid rates [53,54]. In
this case, eight hours of recovery sleep cannot normalize the
reduced cell proliferation associated with prolonged sleep depri-
vation [55]. In humans, reduced hippocampal activation and lower
memory performance have been revealed after 35 h of sleep
deprivation or mild sleep disruption [45,56]. Several reviews have
suggested that sleep might not be capable of promoting cell pro-
liferation and maturation directly, although it is essential for the
normal functioning of other processes and systems that, in turn,
regulate neurogenesis [49,50]. This is particularly important for
health as recent data support the persistence of adult hippocampal
neurogenesis in the adult human dentate gyrus until the ninth
decade of life [57].

Finally, several endogenous factors have been suggested to
impair synaptic plasticity and reduce neurogenesis following
sleep deprivation, including the GH/IGF-1 trophic axis, BDNF
(brain-derived neurotrophic factor), hormones, cytokines, and a
range of neurotransmitters and neuromodulators such as aden-
osine [50,52].

The implication of sleep-GH/IGF-1 and cognition in clinical issues
The effects of GH and its mediator IGF-1 on brain function have

been evaluated in many clinical and preclinical laboratories. Both
are implicated in cognition and neuroprotection, regeneration, and
functional plasticity in the adult brain [for review, see: [41,58e60]].
The GH receptors expressed in the hippocampus and frontal cortex
might mediate significant aspects of memory and cognition. The
neuroprotective actions of IGF-1 are tacitly assumed to operate in
response to altered brain homeostasis. Neurons, glia, endothelia,
epithelia, and perivascular cells are all targets of IGF-1 actions and
key cellular processes in the brain that are affected by IGF-1. This is
illustrated by decreased circulating levels of GH and IGF-1 in the
elderly, and their association with cognitive impairment [61,62].

IGF-1 has therefore emerged as a promising restorative mole-
cule for increasing hippocampal neurogenesis and memory accu-
racy in aged individuals [63]. There are multiple possibilities for
direct actions of peripherally derived or locally produced GH, as
well as endocrine or autocrine/paracrine effects of IGF-1 on the
CNS. Both GH and IGF-1 can penetrate the bloodebrain barrier and
induce profound effects on various CNS-related behaviors [for re-
view, see: 58,59]. GH administration has profound effects on
memory and cognitive capacity in experimental animals as well as
humans with impaired GH production [64,65]. In addition,
increased IGF-1 gene expression in the hippocampus was found in
two-month-old intact male Wistar rats treated with GH in associ-
ation with a significant positive effect of GH on memory functions
[66]. Exogenous GH administration has been shown to increase
IGF-1 hippocampal gene expression, and it also attenuates hypoxia-
induced cognitive deficits and hippocampal injury (i.e., increased
cleaved caspase-3 expression as a marker of neuronal apoptosis)
[67]. IGF-1 also plays an important role in brain development, as
well as neuroplasticity and neurocognitive functions in adults
[20,41,60]. For instance, peripheral infusion of IGF-1 selectively
induces neurogenesis in the adult rat hippocampus [68]. Serum
IGF-1 has also been shown to be an important determinant of
exercise-induced increases in hippocampal neurogenesis [69].
These authors reported that many (but not all) of the beneficial
effects of exercise on brain function depend on circulating IGF-1
and are associated with increased hippocampal neurogenesis in
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adult mice, including improved cognition and reduced anxiety. One
previous electrophysiological study [70] indicated that liver-
derived circulating IGF-1 affects learning and synaptic plasticity
through its trophic effects on central glutamatergic synapses. A
myriad of potential ways may explain how GH and IGF-1 mediate
neuroplasticity, including effects on glutamate receptors, excita-
tion/inhibition balance in neuronal circuitry, calcium channels,
synaptic proteins, and interactions with other neurotrophic factors
[for review see 60]. IGF-I also modulates synaptic strength by
controlling the synthesis and release of diverse neurotransmitters
such as acetylcholine or dopamine [ for review see [71]]. Interest-
ingly, it was recently discovered that dopamine neuron-derived
IGF-1 controls dopamine neuron firing, skill learning, and explo-
ration [72].

Sleep and cognition: the interaction of sex hormones and
inflammation

Another point to consider is that endogenous factors related to
sleep and cognitive function may interact with GH/IGF-1, sex hor-
mones and inflammatory mediators. Sex hormones may play a role
in the regulation of adult hippocampal neurogenesis, in addition to
modulating forms of hippocampus-dependent and prefrontal
cortex-dependent learning and memory in adult rodents and
humans [73]. Chronic peripheral inflammation is associated with
behavioral disturbances linked to disrupted adult hippocampal
neurogenesis, such as cognitive impairment, and deficits in
learning and memory [74]. Normal aging involves the decline of
anabolic sex hormones as well as GH and IGF-1, and creates a state
of chronic peripheral inflammation that can occur at the onset of
cognitive impairment [14,74].

The effects of sleep loss and the GH/IGF-1 axis on cognition

The magnitude of sleep loss in the population

Sleep loss may result from total sleep deprivation (in night-shift
workers), chronic sleep restriction (due to work, medical condi-
tions or lifestyle, or even training, practice, and travel schedules for
athletes), or sleep fragmentation/disruption (such as age-related
sleep impairments, or sleep disorders such as sleep apnea) [for
review see 75]. Acute total sleep deprivation refers to wake periods
that extend beyond the typical 16e18 h, whereas sleep restriction
refers to not getting enough sleep per 24 h for one or multiple
nights.

Sleep deprivation is indeed often found chronically associated
with night work with an averaged one-hour loss per day compared
to day workers [76] and the metabolic impact of sleep debt in night
workers is well demonstrated [77,78]. Conversely, insomnia, the
most prevalent sleep disorder, is not always synonymous of short
sleep and sleep deprivation in adults or even adolescents [79,80].
However, subjects with insomnia who reported chronic short sleep
may have a higher risk of obesity [81].

Unlike total sleep deprivation, restricted sleep is pervasive in
most modern societies, whether it is found in adults, school-aged
children, or adolescents (26%), and is characterized by lower re-
ported sleep durations than the age-recommended amount [82].
Total sleep time was shown to be severely diminished in a French
cross-national study, concerning 16.0% of 11-year-old children and
40.5% of 15-year-old children [83]. In many athletic populations
(including elite adolescent athletes), reduced sleep quantity and/or
poor sleep quality appear to exist, although this may be specific to
athletic training and competition [84]. Similarly, in a military
environment, the three components of good sleeping (timing,
duration, and quality) are challenged, and the self-reported sleep
duration has been reported to range from 5.8 to 6.5 h per night,
irrespective of deployment status, fatigue, depression, post-
traumatic stress disorder, or pain syndromes [85].

Sleep loss and cognitive capacities in the lab

The cognitive, behavioral, and psychophysiological effects of
acute total sleep deprivation (TSD) and chronic sleep restriction
(SR) are well-documented in laboratory protocols, showing that the
largest performance decrements occur for measures of sustained
attention and working memory, while more complex tasks are
comparatively affected to a lesser degree [75,86e88]. A recent
meta-analysis (comprising 71 different study populations and 1688
participants) on the neurocognitive consequences of SR demon-
strated negative effects on neurocognitive functioning, particularly
for measures of sustained attention and executive function, as well
as attentional lapses and behavioral inhibition within these do-
mains [88]. This analysis considered the duration and severity of
the sleep restriction protocols, and the age and sex distribution of
the participants. The results indicate that: 1) the magnitude of the
effect increases with age but without any significant effect on the
older adult population; 2) the effect progressively increases over
subsequent days of restricted sleep; and 3) the effect is directly
modulated via sleep deficit severity. Finally, several studies have
reported on the negative effects of restricted sleep duration on
several aspects of emotional and cognitive functioning in children
and adolescents [for review, see: [89]]. The negative effects of sleep
loss on athletic performance have been repeatedly examined,
mainly showing an altered mood state that affects motivation and
the athlete's precompetitive mood states [90], as well as decreased
motor performance at submaximal intensity [91,92]. In the military
environment, the sleep loss-related impairment of specific cogni-
tive abilities during continuous operations has been previously
described [93]. In all cases, a number of studies have repeatably
revealed that systematic interindividual differences exist in the
resistance and vulnerability to the neurocognitive effects of acute
TSD and chronic SR [94], with prior research suggesting an un-
derlying genetic component [for review, see [95]].

Sleep loss and cognition, and their relationship to the GH/IGF-1 axis,
sex hormones, and inflammation

Acute TSD and chronic SR modulate synaptic plasticity and
neurogenesis-related molecules implicated in cognitive func-
tioning, including GH/IGF-1, BDNF trophic factors, cytokines, hor-
mones, and a range of neuromodulators and neurotransmitters
(Fig. 1). GH administration has been shown to strongly promote cell
proliferation in the adult rat brain and also protect the hippocampal
neuronal processes against the deleterious effect of sleep loss [96].
Several animal studies have also shown the detrimental effects of
restricted sleep on memory processes (i.e., spatial memory and
vigilance) concomitantly with mechanistic factors that could ac-
count for neuroplastic changes and putative brain mechanisms [for
review, see [97]]. Sleep deprivation (96 h) has also been shown to
reduce hippocampal neurogenesis in adult rats [98]. In addition,
TSD has been found to reduce circulating levels of IGF-1, both in rats
and in healthy young men [15,99e101].

The hippocampal expression level of the BDNF trophic factor is
reduced after restricted sleep, while brain inflammatory cytokines
are elevated [102]. However, human studies have identified some
questions concerning the exclusive role of BDNF in sleep
deprivation-related cognitive impairments [103,104], whereas the
implication of IGF-1 and inflammatory cytokines appear to be
strengthened. Declarative memory was impaired after TSD in
healthy young adults while BDNF levels were increased; further-
more, performance was normal regarding attention, response



Fig. 1. Sleep loss/sleep disorders and cognitive capacities: the endocrine and pro-inflammatory cytokines responses.
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inhibition capacity, andworkingmemory [104]. TSDwas also found
to impair sustained attention [87] in association with decreased
IGF-1 levels [15] in young healthy adults, whereas seven days of
sleep extension (one hour per night) limited these deleterious ef-
fects and increased IGF-1 [103].

Peripheral and central inflammation related to sleep loss may
also play a role in cognitive impairments. TSD and SR have been
shown to impair sustained attention [16,19,87] in association with
increased TNF-a serum levels [19,36] and increased TNF-a gene
expression (but not protein levels), with as little as two days of SR
[105]. In rats, TSD and chronic SR induce increased levels of IL-1b
and TNF-a in the circulation and in the brain at gene expression and
protein levels [102,106].

Sex hormones have also been identified among the various
factors that may potentially interact with the GH/IGF-1 axis,
regarding the relationship between sleep loss and cognitive im-
pairments. Along these lines, anabolic testosterone levels have
been repeatedly observed to decrease after TSD and SR, although
they are readily corrected following sleep recovery [99,105,107].

In summary, the mechanisms by which sleep loss affect cogni-
tive capacities may involve a complex and interacting set of factors
that mediate changes in adult synaptic plasticity and neurogenesis,
associated with learning and memory. Here, we have reviewed the
results underlying the potential roles played by molecular factors
such as the trophic GH/IGF-1 axis, the pro-inflammatory cytokines
TNF-a and IL-1b, and sex hormones.

OSA and the roles of the GH/IGF-1 axis and cognition

Obstructive sleep apnea (OSA) is the only sleep disorder that
may be considered as being possibly associated with the GH/IGF-1
axis and cognition. No specific association has been found between
insomnia, the most frequent sleep disorder, and this axis. Indeed,
the GH/IGF-1 axis has been poorly implicated in type one narco-
lepsy, along with the related deficiency in the hypothalamic
hypocretin system.

The reciprocal association between OSA and obesity (a multi-
factorial disease) is well-established, and the incidence of OSA is
12- to 30-fold higher in morbidly obese patients than in the general
population; conversely, OSA may predispose individuals to wors-
ening obesity due to sleep deprivation, daytime sleepiness, and
disrupted metabolism [108]. In non-diabetic obese patients with
OSA, previous research has found that nocturnal GH secretion, and
IGF-1 concentrations were decreased, along with impaired pe-
ripheral sensitivity to GH [109]. Izumi et al. [110] assessed IGF-1
levels in a group of 74 overweight and obese men who were
recorded by polysomnography (PSG) for OSA screening. The au-
thors classically differentiated three groups: 11 subjects with no
OSA (<5/h), eight subjects with mild OSA (5 � x < 15/h), and 28
subjects with moderate-severe OSA (�15/h). They concluded that
OSA is significantly associated with a reduction in IGF-I. Interest-
ingly, IGF-1 levels were negatively correlated with BMI, waist
circumference, the apnea-hypopnea index (AHI), and the sleep
duration with oxygen saturation under 90% as independent vari-
ables. Conversely, IGF-1 was positively correlated with the average
and the minimum O2 saturation as independent variables. These
results show that hypoxemia is associated with reduced IGF-
1 [110].

The mechanisms underlying how OSA affects the secretion of
GH and IGF-1 are not yet clearly understood, independently of the
impact of obesity by itself. However, several studies have shown
that OSA contributes to the development of the metabolic syn-
drome and diabetes [111], which may by themselves reduce the
secretion of GH and IGF-1. Conversely, obesity by itself is generally
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not found to have a significant influence on the level of IGF-1 in OSA
patients [112]. In this latter study, plasma IGF-1 levels, as well as
free and total testosterone, were significantly lower in relation to
the severity of sleep apnea.

Other studies have proposed that OSA may impact GH secre-
tion, via the percentage of SWS [113]. GH is indeed secreted
during SWS, mainly within the first part of the night [31], which is
often fragmented by OSA. The association found by Izumi et al.
[110] between AHI and the IGF-1 index should be in favor of such
a fragmentation role. Moreover, Gianotti et al. [114] conducted a
survey that observed 13 adult male patients with OSA (mean age:
52.6 y) as well as 15 weight-matched patients with simple obesity
and 10 normal lean male subjects, concluding that OSA more
markedly impairs the maximal secretory capacity of somatotroph
cells, together with reduced IGF-1 sensitivity to GHRH stimulation.
This suggests that OSA concomitantly impairs GH secretion and
sensitivity. However, contradictory results have been found in
elderly subjects (mean age: 77 y) [115]. These authors studied
1233 participants in the Cardiovascular Health Study, and found
no significant linear association between SWS (objectively
measured by PSG) and IGF-1, IGFBP-1, or IGFBP-3 levels after
adjusting for age, sex, race, BMI, diabetes, estrogen use, progestin
use, and physical activity. The authors therefore postulated that
aging appears to dilute the adverse influence of sleep-disordered
breathing on the GH/IGF-1 axis system.

Hypoxemia by itself is also believed to reduce IGF-1 levels. In
mice, treatment with a selective GHRH agonist reduced markers of
oxidative stress in the cortex and hippocampus, promoted an
enhanced expression of the neuroprotective genes IGF-1 and EPO,
and markedly attenuated intermittent hypoxia (IH)-induced
cognitive and behavioral deficits [116]. Inmenwith OSA [110], IGF-1
levels were independently correlated with the average desatura-
tion and oxygen desaturation index.

All deleterious mechanisms previously discussed in this review
may also affect those cognitive disorders that are classically associ-
ated with OSA [117] (Fig. 1). Both desaturation and fragmented sleep
may contribute to this altered cognition, which may also be affected
by the cognitive reserve of each individual. There are certainly other
less documented yet important factors at work such as cerebral
blood flow, the bloodebrain barrier, systemic inflammation, and
metabolic dysfunction, all of which we described here, as well as any
genetic predisposal to susceptibility [117]. In addition, sleepiness, a
cardinal symptom of OSA, is strongly associated with attention
dysfunction and may possibly impact short-term memory without
affecting working memories or recovery domains [118]. Here, due to
the contributions of SWS and REM sleep to different memory func-
tion processes [119], sleep disruption associated with OSA may be
able to explain altered cognition in patients, depending on the
severity and the duration of the disease.

Finally, the cognitive effect of OSA can certainly be attributed to
the oxidative and inflammatory processes that we have described
here, which are associated with the adaptive or maladaptive re-
sponses to repetitive hypoxemia and oxygenation on brain cells
[110,116]. One survey in children has been illustrative in showing
that IGF-1 levels are higher in children with OSA, particularly those
who do not manifest any neurocognitive deficits, suggesting that
the magnitude of the IGF-1 response elicited by OSA may play a
significant protective role against the neurocognitive dysfunction
associated with OSA [120].

On a reciprocal point of view, it is also of interest to enquire
how GH-IGF-1 specific disorders like acromegaly or PradereWilli
syndrome (PWS) may affect by themselves sleep and OSA or
cognition [121e123]. It may be found indeed it paradoxical that
patient with acromegaly (due to an excess secretion of GH and
IGF-1) had also an excess rate of OSA. By one side, the modified
craniofacial appearances of patients with acromegaly may
explain the pathophysiology of the excess of OSA comorbidity in
these patients [121]. A vertical growth of the mandible leads to a
dorsocaudal rotation, which promotes the pharyngeal obstruc-
tion. The treatment of acromegaly either with medical (which
act on the soft tissue but not on the bone) and by surgical
reduction of hyperplastic bone may or not improve OSA with
contradictory results [121,124,125]. Besides OSA, central sleep
apnea events were also reported, in relation with the specific
cardiomyopathy with concentric biventricular dystrophy, which
results to the excess of GH and IGF-1. This pathological issue has
not been taken into account, in our knowledge, to understand
the neuroprotective effect of OSA in acromegaly versus control
patients.

The children with PradereWilli syndrome (PWS) having a hy-
popituitarism syndrome with an insufficient secretion of GH had a
high rate of OSA (between 38 and 100%) depending of studies
[126,127]. Among youths with OSA, 53.07% had mild OSA, 22.35%
moderate OSA, and 24.58% severe OSA [127]. The treatment by GH
is not associated systematically with an improvement of OSA
severity and the surgical treatment may sometimes increase the
risk of velopharyngeal insufficiency with no OSA index improve-
ment [128]. Adenotonsillectomy was associated with improvement
in OSA for most children with PWS. However, residual OSA was
present in the majority of cases post-surgery [128].

Sleep loss and OSA: the impact of countermeasures on the GH/
IGF-1 axis

Limiting of sleep loss-related impairments to cognitive capacities in
healthy subjects

Sleep extension
Several countermeasures are useful for limiting cognitive im-

pairments related to sleep loss, particularly in adolescents and
relatively young populations such as athletes and enlisted military
personnel. In athletes, sleep is suggested to be the best strategy
for recovery [129]. Sleep promotion may be approached via
behavioral interventions such as sleep hygiene, nighttime sleep
extension, daytime napping, or even the use of sleep-promoting
compounds (e.g., melatonin). In normal-sleeping college stu-
dents (and even in short-sleeping workers), sleep extension has
been shown to produce favorable effects on alertness and per-
formance during the first day of the following week, although
these benefits dissipate soon afterwards [130]. Subsequently, a
study on sleep extension and athletic performance revealed that
actively competing athletes have significant improvements in
specific indices, reaction times, daytime sleepiness, and mood,
after 5e7 wk of sleep extension [131]. In chronically sleep-
deprived obese individuals, sleep extension (468 ± 88 d) via
lifestyle modifications was shown to improve cognitive function
and attention [132]. Two laboratory studies found beneficial ef-
fects of sleep extension on cognitive performance in healthy
young adults under TSD and SR conditions [87,133]. Seven days of
sleep extension before one week of SR (3 h/night) and before TSD
have been shown to influence the rate of degradation in cognitive
performance and alertness, both during sleep restriction and in
subsequent recovery periods. Because of the importance of the
GH/IGF-1 axis on cognition and adult neurogenesis, the upregu-
lation of the neurotrophic IGF-1 has been suggested to represent a
possible physiological mechanism for such cognitive benefits [87]
(Fig. 2). Specifically, seven days of sleep extension (72 min per
night) increased circulating levels of total and free IGF-1 in young
healthy adults during a TSD experimental protocol [103]. In rats,
IGF-1 levels were significantly higher in the frontal cortex, plasma,
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and skeletal muscle after fourteen days of sleep extension, while
levels of testosterone were not influenced [134].

Exercise training
Recent evidence indicates that physical activity enhances SWS

and improves memory performance, particularly in the elderly
(after an activity program of 14 continuous days of exposure to
structured social and physical activities) [135]. The benefits of
physical activity (particularly aerobic exercise) on cognitive func-
tion (especially in cognitive domains dependent on the hippo-
campus) have been well-established in animal models, and also
more recently using neuroimaging approaches throughout the
human lifespan [for review, see [136,137]]. In healthy young men,
seven weeks of combined moderate- and high-intensity exercise
interval training was recently shown to have a significant but
relatively small beneficial effect on the vigilance/sustained atten-
tion deficits during total sleep deprivation, without effects on in-
hibition and working memory capacities [138]. Exercise training
has also been shown to increase the size of the hippocampus and to
improve memory in older adults [139].

Concerning molecular mechanisms, exercise exerts beneficial
effects on learning and memory via modulation of the key growth
factors IGF-1 and BDNF. Exercise increases GH release, as well as
BDNF and IGF-1 gene expression and protein levels, in the periphery
and in several brain regions. Acute (i.e., brief, high-intensity) exer-
cise-induced GH responses have been found to be significantly
increased in sleep-deprived individuals [140]. One report has sug-
gested that peripheral IGF-1 and possibly centrally derived IGF-1
mediate the induction of hippocampal BDNF with exercise, subse-
quently enhancing learning [141]. These authors postulated that
exercise develops brain health and cognition through growth factor
cascades, and also anti-inflammatory peripheral and central effects.
Exercise training also reduces hippocampal IL-1b and TNF-a related
to TSD in rats [106]. Furthermore, exercise-reduced levels of hippo-
campal IL-1b have been found to improve memory in aging rats
[142]. The possibility that sleep extension may promote effects
similar to exercise on growth factors (particularly IGF-1) and cogni-
tion was recently established in healthy men and adult rats (dis-
cussed above) [87,103,134]. In summary, the beneficial effects of sleep
extension or exercise interventions on cognitive performancemay be
due to anti-inflammatory effects and upregulation of anabolic IGF-1
levels in the brain and the periphery.
Limiting the consequences of OSA on cognitive capacities

Therapeutic approaches that target sleep disturbances in order
to normalize circadian rhythms and sleep homeostasis may
represent a novel strategy to preserve or enhance neuroprotection
in subjects afflicted by fragmented sleep or OSA sleep disorder.

Administration of GH in patients with OSA
By studying rats with intermittent hypoxemia (IH), several teams

have shown that exogenous GH administration has anti-apoptotic
and neuroprotective effects in the context of IH-induced neuronal
injury, and that the physical activity associated with these neuro-
protective effects mediates, at least in part, endogenous IGF-1
expression [67,143]. Administration of a GHRH agonist has been
proven to attenuate IH-induced neurocognitive deficits, anxiety, and
depression in mice, along with a reduction in associated stress
markers and an increase in IGF-1 markers [116]. Furthermore, the
authors suggest that these results may be associated with an
improvement in oxidative stress on the CNS attributed to IH.

The impact of continuous positive airway pressure (CPAP) therapy
The gold standard for OSA treatment is CPAP therapy.

Recently, Hoyos et al. [144] clearly demonstrated the positive
impact of treating OSA with CPAP on GH and IGF-1 parameters.
These authors conducted a randomized 12-wk long sham-
controlled study to examine the effects of CPAP therapy on
pulsatile GH secretion, IGF-1, IGFBP-3 and IGFBP-1. Additionally,
the authors measured overnight GH secretion and pulsatility
with frequent overnight blood sampling using gold-standard
deconvolution analyses in a subset of participants. They also
used correlation to assess whether these changes were driven by
changes in SWS or hypoxemia, since both typify OSA. The au-
thors concluded that twelve (but not six) weeks of CPAP therapy
increases IGF-1, with a further increase occurring after 24 wk.
Total and pulsatile GH secretion, secretory burst mass, and pulse
frequency were also increased by 12 wk of treatment. These
results indicate that CPAP therapy improves specific elements of
the GH/IGF-1 axis in a time-dependent manner.

The fact that CPAP restores altered cognition in patients with
OSA and reduces daytime sleepiness and mood problems asso-
ciated with the disease has been widely reported in meta-
analyses [118]. Therefore, it is not easy to objectively assess



Research agenda

1 More studies are required to examine the mechanistic

and neurophysiological links between sleep loss/disor-

ders and the anabolic GH/IGF-1 axis

2 Future research will be needed to examine whether

auditory closed-loop slow sleep oscillations can influence

the anabolic GH/IGF-1 axis
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this improvement, since cognition is not systematically included
as a main criterion in clinical trials using CPAP [118]. However,
patients with Alzheimer's disease and OSA have a slower
cognitive decline when they are treated by CPAP [145,146]. CPAP
also partly reversed the damage to hippocampal regions by
improving neurocognitive deficits in 17 patients that were
treatment-naive to sleep apnea, in comparison to 15 age-
matched healthy control subjects [147]. Moreover, one recent
review postulates that CPAP therapy is needed at least four hours
per night to improve executive function at two months [148].
Nevertheless, six hours (or more) of therapy may provide addi-
tional neurocognitive improvement for vulnerable populations
characterized by a decreased neurocognitive reserve and asso-
ciated diseases. Genetic profiles may also help to predict the
neurocognitive effects of CPAP.

Conclusion and perspectives

Sufficient sleep on a regular basis is highly recommended for
good health in children and adults. In this review, we have
described the interactions between sleep cognition and the GH/
IGF-1 axis in order to highlight how sleep is also important for
maintaining cognitive function in healthy individuals during sleep
loss conditions.

Our review also emphasizes the importance of sleep for youth,
athletes and the military in particular, since performance in the
latter group relies heavily on sleep, especially when critical man-
agement decisions are at stake, as well as well-being and health.
Indeed, it has become essential in modern societies to implement
sleep hygiene practices, since this is an inexpensive approach for
optimizing cognitive and physical capabilities at all ages.

It is important to note that we lack information on the relative
contribution of genetic factors to individual responses within the
context of the GH/IGF-1 axis, since there are interindividual dif-
ferences to sleep loss responses in healthy individuals. Research in
the 1990s suggested the influence of genetic factors and lifestyle,
due to observed differences in the magnitude of the GH response
to GHRH administration in a homogeneous group of healthy
young men [28]. In addition, several other studies have proposed
the importance of genetic factors on the variability of circulating
levels of IGF-1 (and its main binding protein IGFBP-3) within
normal populations [149]. Future research will need to more
extensively explore the relationship between the anabolic IGF-
1 axis, sleep, and sleep loss consequences.
Practice points

1 Sleep regulates the anabolic GH/IGF-1 axis; cognitive ca-

pacities are intertwined with both systems of the axis

2 Sleep loss impairs the cognitive capacities of healthy in-

dividuals and influences GH/IGF-1 responses

3 OSA impairs GH secretion and IGF-1 sensitivity, which

may contribute to cognitive impairment

4 Sex hormones and inflammation are likely to be involved

in the clinical consequences of sleep loss/OSA sleep dis-

order that affect cognition

5 Sleep loss and OSA-related cognitive deficits may be

lessened by sleep extension, physical activity or CPAP

therapy, by acting through the upregulation of the

anabolic GH/IGF-1 axis and downregulation of

inflammation
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