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The syndrome of adult GH deficiency and the effects of GH
replacement therapy provide a useful model with which to
study the effects of the GH/IGF-I axis on exercise physiol-
ogy. Measures of exercise performance including maximal
oxygen uptake and ventilatory threshold are impaired in
adult GH deficiency and improved by GH replacement,
probably through some combination of increased oxygen
delivery to exercising muscle, increased fatty acid avail-
ability with glycogen sparing, increased muscle strength,
improved body composition, and improved thermoregula-
tion. In normal subjects, in addition to the long-term effects
of GH/IGF-I status, there is evidence that the acute GH re-
sponse to exercise is important in regulating substrate me-
tabolism after exercise. Administration of supraphysiologi-

cal doses of GH to athletes increases fatty acid availability
and reduces oxidative protein loss, particularly during ex-
ercise, and increases lean body mass. Despite a lack of ev-
idence that these metabolic effects translate to improved
performance, GH abuse by athletes is widespread. Tests to
detect GH abuse have been developed based on measure-
ment in serum of 1) indirect markers of GH action, and 2) the
relative proportions of the two major naturally occurring
isoforms (20 and 22kDa) of GH. There is evidence that ex-
ercise performance and strength are improved by admin-
istration of GH and testosterone in combination to elderly
subjects. The potential benefits of GH in these situations
must be weighed against potential adverse effects. (Endo-
crine Reviews 28: 603–624, 2007)
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I. Introduction

DEVELOPMENT OF AN assay for human GH (1, 2) was
closely followed by the observation that plasma levels

of GH increase soon after the beginning of exercise (3). Be-
cause of the known anabolic and lipolytic effects of GH and
the observation that the exercise-associated increase in GH
precedes an increase in circulating free fatty acids (FFAs), it
was hypothesized that GH might play an important meta-
bolic role during exercise (4, 5). Further evidence for this
notion came from the discovery in the 1980s that exercise
capacity and muscle strength are impaired in GH-deficient
(GHD) adults and improved by GH replacement (6–9). Al-
though there is now a large body of literature addressing the
effects of the GH/IGF-I axis on exercise and the effects of
exercise on the GH/IGF-I axis, the contribution of GH to
exercise capacity in normal subjects remains unclear.

Reports of the use of GH by athletes as a performance-
enhancing agent (10, 11) predate the introduction of recom-
binant human GH (r-hGH) by at least 5 yr, and there is an
increasing body of evidence that GH abuse represents a
significant problem in a number of sports including athletics,
swimming, and cycling (12, 13). The likelihood that attaining
supraphysiological GH levels improves exercise perfor-
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mance should be considered in the context that although GH
is clearly anabolic, there is no evidence that exercise capacity
is enhanced by administration of GH to normal subjects
(12–14), and in patients with long-standing endogenous GH
excess (acromegaly), muscle strength is usually reduced (15).
However, recent metabolic studies provide a plausible mech-
anistic explanation through which supraphysiological GH
administration could lead to short- or-medium-term im-
provements in exercise performance, and regular seizures of
GH from athletes demonstrate an ongoing belief in sporting
circles that GH is performance enhancing.

The purpose of this review is, using data from GHD and
normal subjects, to address the physiological role of the GH-
IGF-I axis during exercise. We will also consider whether avail-
able evidence supports an effect of supraphysiological GH ad-
ministration to enhance exercise performance and strength in

athletes, and we will describe recently developed tests to detect
GH abuse in sport. Finally, we will review data from studies
that have addressed the possibility that administration of su-
praphysiological doses of GH might improve exercise perfor-
mance in GH-replete subjects with impaired exercise capacity,
including the healthy elderly and the obese.

II. Lessons from GH-Deficient (GHD) Subjects and
Their Response to GH Replacement

A. The effects of GH deficiency and replacement on
exercise performance

In a recent review describing how changes in GH status
influence functional capacity and quality of life, the effects of
GHD and replacement on exercise performance have been
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FIG. 1. The effects of GHD (first panel) and
GH replacement (second panel) in GHD
adults on components of the physiological
response to exercise. TG, Triglyceride;
IMTG, intramuscular TG.
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comprehensively evaluated (16). Briefly, maximal oxygen
consumption (VO2max; aerobic capacity or the maximum
ability to take in and use oxygen) in GHD adults has been
consistently shown to be reduced by estimates ranging from
17 to 27% compared with values predicted for age, gender,
and height (6, 8, 17). The effect of treatment with GH to
improve exercise performance in GHD adults was demon-
strated in some of the first trials of GH replacement to be
published, although the doses of GH used in those studies
are now known to be supraphysiological. Cuneo et al. (6)
demonstrated increases (and normalization compared with
predicted values) in VO2max, maximal power output, and the
ventilatory threshold (VeT; lactate threshold) after 6 months
of GH replacement in GHD subjects. Notably, the magnitude
of the increase in VO2max was proportionate to the increase

in lean body mass (LBM), and after adjustment for changes
in LBM or thigh muscle area, did not differ from baseline.

Woodhouse et al. (9) confirmed the finding that GH
replacement increased VeT, demonstrated a reduction in
fatigue after GH replacement, and provided a plausible
explanation as to the mechanism through which this effect
occurred. Before GH replacement, VeT occurred at a high
percentage of VO2max because VO2max was low. Walking
required high oxygen consumption relative to VeT (a mean
of 83% at normal speeds and a mean of 120% at fast
speeds). This effect is likely to lead to fatigue because,
compared with normal subjects, the oxygen consumption
necessary to carry out daily activities is more likely to
exceed VeT, leading to lactate accumulation and limitation
of activity. GH replacement increased VeT and also re-
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duced the oxygen cost of walking relative to VeT at normal
and fast speeds.

The majority of studies reported to date have demon-
strated increased maximum work rate (6, 8, 9, 17–23) and
VO2max (6, 8, 9, 17, 19) after GH replacement in subjects with
both childhood- and adult-onset (AO)-GHD, although sta-
tistically significant improvements compared with placebo
were not demonstrated in all of these studies (8, 18, 19). One
study demonstrated no improvement after GH replacement
(24), whereas another demonstrated no difference in the im-
provement in VeT after exercise training in combination with
GH replacement compared with after exercise training alone
(25). Some of these studies may have been underpowered to
detect between-group differences. The largest study to date
addressing exercise performance in response to GH replace-
ment included 55 patients with AO-GHD in a placebo-con-
trolled, crossover study in which GH therapy was individ-
ually dosed to obtain an IGF-I concentration within the
normal range for age and sex (26). A highly significant effect
of GH replacement to increase VO2max by approximately 6%
was observed. The overall body of evidence therefore sup-
ports an effect of GH to improve maximum work rate,
VO2max, and VeT, with changes in VO2max apparently ac-
counted for by increased LBM.

B. Mechanisms by which GH improves exercise performance
in GHD adults

The ability to perform exercise requires combustion of
metabolic fuels, transforming chemical into kinetic and ther-
mal energy. Glucose is the preferred fuel source for short-
term high-intensity activity, whereas FFAs (derived from the
circulation or from triglycerides stored in muscle or adipose
tissue) become increasingly important during more pro-
longed activity (27). O2 delivery to muscles depends upon
adequate ventilation and O2 transport to hemoglobin, cir-
culatory distribution by an adequate cardiac output (CO) and
peripheral circulation, dilatation of the muscle capillary net-
work, and extraction of O2 by the muscle fibers with either
storage in myoglobin or immediate combustion. GH could
improve exercise performance through increased delivery of
substrate and oxygen to exercising muscle, increased fat ox-
idation with glycogen sparing, increased muscle strength, or
a combination of these variables. GH could also improve
exercise performance through indirect mechanisms, includ-
ing changes in body composition or more efficient thermo-
regulation. These possible effects are demonstrated in Fig. 1.

1. Cardiorespiratory and hematological effects. When pulmonary
function [which does not appear to be impaired in GHD or
improved by GH replacement (6, 8)] is adequate, delivery of
O2 to exercising muscle is dependent on the O2-carrying
capacity of the blood, CO, and regional blood flow. GH and
IGF-I increase erythropoiesis in vitro (28, 29), in animal mod-
els (30), and in growing children (31). Christ et al. (32), using
radionucleide dilution studies, demonstrated reduced red
cell mass and total blood volume in GHD adults, and nor-
malization after GH replacement. Consistent with other
studies, GH replacement also increased plasma volume,
which by increasing preload, would be predicted to increase
stroke volume (SV) and CO, the product of SV and heart rate.

Independent of effects on preload, GH could also increase
cardiac contractility through an anabolic effect on the myo-
cardium, mediated either directly or through increased IGF-I
(33). Most (34–36), but not all (37, 38) studies using echo-
cardiography or equilibrium radionucleide angiography
have demonstrated reduced left ventricular (LV) mass and
LV ejection fraction (EF) in GHD adults compared with nor-
mal subjects. Reports of the effects of GH replacement on
cardiac structure and function are inconsistent, but a recent
meta-analysis (39) of placebo-controlled trials demonstrated
a significant effect of GH replacement to increase left ven-
tricular posterior wall thickness and SV. Of particular im-
portance to this review is evidence from studies using ra-
dionucleide angiography that GH enhances the ability of
LVEF to increase during exercise, which is necessary to pro-
vide adequate blood supply to exercising muscle (40, 41).

The effects of GH on SV and CO must be considered in
relation to changes in systemic vascular resistance (SVR) and
afterload. As described above, GH replacement increases SV,
which in the absence of change in heart rate would be ex-
pected to increase mean arterial pressure. However, mean
arterial pressure does not change or even decreases (42) after
GH replacement, and because it represents the product of CO
and SVR, this observation can only be explained by a re-
duction in SVR. A mechanistic explanation for this effect is
provided by a study that demonstrated increased production
of nitric oxide, the key mediator of endothelial relaxation,
after 3 months of GH replacement (43). To date, no reported
studies have addressed whether GH also influences the
changes in regional blood flow that occur during exercise.

2. Substrate metabolism. Hunter et al. (5) reported in 1965 that
the exercise-induced increase in GH was followed by an
increase in fatty acids and suggested that through its lipolytic
effect GH could increase availability of fat as substrate dur-
ing exercise. Under resting conditions, particularly when
fasting, fatty acids are the predominant fuel used by skeletal
muscle. Fat oxidation increases in relation to the intensity of
exercise up to 65% of VO2max (45), when it accounts for
approximately 50% of energy expenditure, but with increas-
ing intensity of exercise, the reliance on glucose as fuel in-
creases, and the relative oxidation of glucose in relation to fat
increases (27). Whether fatty acid availability influences par-
titioning of substrate oxidation during exercise is unclear,
some studies demonstrating increased fat oxidation and re-
duced muscle glycogen depletion when fatty acid availabil-
ity is greater (46–49), and others demonstrating no effect
(46–51).

GH directly stimulates lipolysis through activation of ad-
enylyl cyclase followed by activation of cAMP-dependent
protein kinase and phosphorylation and activation of hor-
mone-sensitive lipase (52). Studies in fat cells (53–55) and in
animal models have shown that in addition to its direct
lipolytic effect on adipose tissue (demonstrated by stimula-
tion of basal lipolysis), GH also increases lipolysis indirectly
by altering the effect of adipocytes to respond to lipolytic
factors such as catecholamines.

Raben and Hollenberg (56) in 1959 demonstrated that GH
increased plasma FFA in human subjects, and Rabinowitz et
al. (57) in 1965 demonstrated that administration of GH en-
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hanced forearm muscle uptake and oxidation of FFA and
increased the release of FFA from adipose tissue. GH, ad-
ministered as a bolus or by infusion, increases circulating
levels of glycerol and FFA in GHD and normal subjects after
a lag time of 2–3 h (58–61). Small pulses of GH designed to
mimic physiological pulses have been shown to induce a
dose-dependent stimulation of lipid oxidation and increase
circulating levels of FFA and glycerol (62). Using microdi-
alysis techniques, it has been shown that a physiological GH
pulse stimulates lipolysis in both abdominal and femoral
adipose tissue, although to a greater degree in abdominal
tissue (62). The metabolic effects of GH under resting con-
ditions are summarized in Table 1.

In normal subjects, the onset of exercise leads to a 3-fold
increase in the rate of lipolysis and a rapid increase in uptake
of FFAs into skeletal muscle (45). Two recent studies using
stable isotope techniques have provided evidence that GH is
important in this response. Gibney et al. (63) studied lipolysis
and fatty acid turnover in GHD subjects during and after
discontinuation of long-term GH replacement. Discontinu-
ation of GH was not associated with any change in lipolysis
or fatty acid turnover at rest but resulted in a marked re-
duction in lipolysis and fatty acid release into the circulation
during and after exhaustive exercise and in reduction of
circulating levels of FFA (Fig. 2). The rate of disappearance
of FFA from the circulation, which during exercise is largely
into skeletal muscle, was also reduced after GH withdrawal.
Kanaley et al. (64) carried out exercise studies in GHD adults
who were receiving long-term GH replacement on 2 separate
days, once with and once without a bolus of GH adminis-
tered iv at the start of exercise. The protocol resulted in an
increment in circulating GH levels during exercise that was
indistinguishable from that seen in healthy normal subjects.
Under resting conditions, there was no effect of GH, whereas
during and after 45 min of exercise at lactate threshold there
was a greater increment in fatty acid turnover after GH
administration.

GH clearly increases whole-body fat oxidation under rest-
ing conditions, and an increase in maximal fat oxidation
during exercise has also been demonstrated in GHD adults
after 6 and 12 months of GH replacement (65). However, in
a recent study using Affymetrix gene chips, GH replacement

significantly reduced the expression in skeletal muscle bi-
opsies of a large group of genes involved in lipid metabolism,
including some of the key enzymes that mediate fatty acid
�-oxidation (66). These findings suggest that under resting
conditions (when the biopsies were taken), increased fat ox-
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FIG. 2. A, Lipolysis estimated from the rate of appearance of glycerol
at rest, during exercise, and 30 min after exercise in GHD adults (n �
8) while receiving GH (GH�) and 3 months after discontinuation of
GH replacement (GH�). B, Total body, trunk, and nontrunk fat es-
timated using dual-energy x-ray absorptiometry scanning in GHD
adults (n � 8) while receiving GH (GH�) and 3 months after discon-
tinuation of GH replacement (GH�). Results are expressed as per-
centage change from baseline. *, P � 0.05 for the change from baseline
compared with a matched group of GHD adults who continued on GH
replacement (data not shown). [Adapted from Ref. 63 with permission.
Copyright 2003, The Endocrine Society.]

TABLE 1. Metabolic effects (under resting conditions) of adult GHD, GH administration to healthy normal subjects, and long-term GH
excess in the pathophysiological model of acromegaly

GHD Normal Acromegaly

Comparison with
normal subjects

Effect of
treatment

Effect of
GH administration

Comparison with
normal subjects

Effect of
treatment

Insulin sensitivity s N s s a
Carbohydrate metabolism

Hepatic glucose production N s/N N a s
Glucose uptake s/N s s s a
Glucose oxidation a/N s s/N a/N N

Fat metabolism
Lipolysis s/N a a a/N N
Fat oxidation s a a a/N s/N

Protein metabolism
Proteolysis s a/N a a s
Oxidative protein loss N s s N a
Protein synthesis s a a a s

a, Increased; N, not different/unchanged; s, decreased.
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idation in response to GH occurs in tissues other than skeletal
muscle. It is possible that different effects would occur dur-
ing exercise.

There is less information available concerning the effects
of GHD and GH replacement on glucose kinetics during
exercise. Under resting conditions, GH administration re-
sults in increased hepatic glucose production, reduced glu-
cose uptake into skeletal muscle, and increased insulin se-
cretion (67–73). There is increasing evidence that this effect
may occur secondary to the lipolytic effect of GH (74). In the
study of Gibney et al. (63), plasma glucose levels were greater
under resting and exercise conditions during GH replace-
ment, although in the study of Kanaley et al. (64) where a
stable isotope glucose tracer was used, there was no dis-
cernible effect of GH on the rate of glucose appearance into
or disappearance from the circulation. GH replacement did
not alter glucose oxidation during exercise in the study of
Brandou et al. (65).

In summary (Table 2), therefore, there is strong evidence
that GH replacement increases lipolysis, FFA availability,
and uptake from the circulation more markedly during ex-
ercise compared with resting conditions. There is also pre-
liminary evidence that GH replacement increases whole-
body fat oxidation during exercise, although it is not known
whether this effect occurs in skeletal muscle or in other tis-
sues. The effects of GH replacement on glucose metabolism
during exercise appear to be less marked.

3. Muscle mass and strength. There is an extensive body of
literature from in vitro and animal models concerning the
cellular mechanisms through which GH and IGF-I exert an-
abolic effects on skeletal muscle (reviewed in Ref. 16). Recent
studies in human subjects have provided further information
regarding the immediate and short-term effects on gene tran-
scription through which these processes occur. Jorgensen et
al. (75) studied the effects on GH signaling in skeletal muscle
biopsies in normal subjects before and 30 or 60 min after an
iv bolus of GH. GH induced tyrosine phosphorylation (in-
dicating activation) of STAT5, consistent with a direct effect
of GH in skeletal muscle, mediated through the Janus
kinase/signal transducer and activator of transcription (JAK-
STAT) signaling pathway. This finding is consistent with
previous observations from regional amino acid balance
studies that showed an acute effect of GH to promote protein
synthesis in forearm muscle (76). In the study of Sjögren et

al. (66) described in Section II.B.2, 2 wk of GH replacement
increased skeletal muscle gene expression of IGF-I and ex-
erted complex potentially anabolic effects on genes involved
in protein synthesis and degradation. These results provide
preliminary evidence of how GH acts in skeletal muscle, but
more studies are clearly required to elucidate these complex
effects.

The physiological importance of the anabolic effect of GH
is apparent in GHD adults. These effects have been compre-
hensively documented and reviewed (16, 77, 78) and will not
be considered in detail here. Briefly, LBM is reduced in GHD
adults by approximately 7–8% compared with age- and gen-
der-matched normal subjects (77–79), representing similar
reductions in extracellular water and body cell mass, the
metabolically active component of LBM (80). Skeletal muscle
comprises the majority of body cell mass, and studies using
computed tomography and magnetic resonance imaging
scanning have demonstrated a reduction in cross-sectional
skeletal muscle area in GHD adults that is proportional to the
reduction in LBM estimated by measurement of total body
potassium (81, 82). Reduced muscle mass in GHD subjects is
associated with reduced isometric muscle strength (81–84),
whereas some (19) but not all studies have also demonstrated
reduced isokinetic strength (81, 83). It remains uncertain
whether reduced strength is entirely accounted for by the
reduction in muscle mass or whether there is also intrinsic
muscle weakness associated with GHD (for review, see Ref. 16).

In contrast to the protein anabolic effect of GH replace-
ment, which occurs within days to weeks of initiation of
treatment, the overall body of evidence suggests that long-
term but not short-term GH replacement increases and nor-
malizes muscle strength. Cuneo et al. (82) carried out an
extensive series of strength tests at the beginning and end of
6 months of GH replacement. Strength increased in most of
the nine muscle groups that were studied, but it only reached
statistical significance in one of the groups. This study and
two other studies of GH replacement, lasting 12 wk and 6
months, respectively (17, 19), may not have been adequately
powered to demonstrate a statistically significant effect.
However, it is also possible that a detectable increase in
muscle strength would require GH replacement of longer
duration, and subsequently Johannsson et al. (85) demon-
strated this in a 2-yr open-label study. In this study at base-
line, compared with a reference population of normal sub-
jects, GHD adults exhibited reductions in isometric and
isokinetic muscle strength and local muscle endurance. After
2 yr of treatment with a mean daily dose of 0.62 � 0.03 mg
of GH, isometric and isokinetic strength increased into the
normal range, although a reduction was seen in muscle en-
durance. A later study confirmed that these effects persisted
after 5 yr of treatment (86). Like many of the clinical features
of GHD, the effect of GH replacement was most pronounced
in subjects in whom strength was most abnormal at baseline.

4. Body fat, extracellular water, and thermoregulation. In addition
to reduced muscle mass, other abnormalities of body com-
position (see Table 3 for summary of effects) and the ability
to dissipate excess heat in GHD could contribute to impaired
exercise performance. Total body and centrally distributed
fat are increased in proportion to the duration of GHD,

TABLE 2. Metabolic effects during and after exercise of GH
replacement in GHD and GH administration to normal subjects

GH replacement
in GHD adults

GH administration
to normal subjects

Carbohydrate metabolism
Hepatic glucose production N a
Glucose uptake N a
Glucose oxidation N N

Fat metabolism
Lipolysis a a
Fat oxidation a N

Protein metabolism
Proteolysis N a
Oxidative protein loss NK s
Protein synthesis NK a

NK, Not known; a, increased; N, unchanged; s, decreased.
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whereas extracellular water is reduced. The ability to carry
out weight-bearing exercise is influenced by the quantity of
body fat, which represents a mechanical limitation to exer-
cise. The effect of reduced extracellular water on exercise
capacity is less clear but might also be important. Sweating
is essential for maintenance of body temperature during
exercise, and thus impaired thermoregulation during exer-
cise may also contribute to reduced exercise capacity in
GHD. Using pilocarpine iontophoresis, it has been demon-
strated that the sweat secretion rate is significantly lower in
GHD adults than in appropriately matched control subjects
and is increased during GH replacement. Juul et al. (87)
demonstrated impaired thermoregulation during heat expo-
sure and exercise in untreated GHD adults compared with
normal control subjects. The same group later compared
sweating and body temperature during exercise in hot con-
ditions (35 C) in GHD adults who were receiving long-term
(4 to 20 yr) GH replacement and normal subjects (88). Despite
GH replacement, sweat secretion rates were reduced, body
heat storage was increased, and therefore there was a greater
increase in core temperature during exercise in GHD sub-
jects. Interestingly, five of 10 GHD patients stopped exercise
prematurely because of subjective discomfort and signs of
heat exhaustion.

C. Limitations of using GHD adults to study the
physiological effects of GH

Although GHD adults, studied before and after acute or
long-term administration of GH, provide a useful model to
study the physiological effects of GH, a number of potentially
confounding variables must be considered.

First, studies of exercise physiology in GHD subjects have
generally been small and, as detailed in Section II.A, did not
all demonstrate significant results using rigorous statistical
methods. Although this might reflect type 2 statistical error,
the possibility of publication bias must also be considered,
i.e., trials showing a positive effect of GH are more likely to
be published and ultimately included in meta-analysis.

Second, pharmacological GH replacement with a single sc
nightly injection poorly reflects physiological GH produc-
tion. In normal subjects, GH is secreted in a pulsatile manner,
with episodic bursts shortly after the onset of sleep, during
exercise, and a few hours postprandially (89). Potential ef-
fects of the GH/IGF-I axis on exercise physiology include
both a long-term effect of GH secretion with changes medi-
ated by both GH and IGF-I, and as described in detail in
Section III.A a short-term effect mediated by the acute GH
response to a given bout of exercise. Most of the studies

reported above have addressed the medium- to long-term
effects of GH replacement, but few have included any at-
tempt to replicate the GH response to exercise.

Third, abnormal findings in GHD subjects must be inter-
preted in the context that the onset of GHD in adult life is
usually secondary to significant pathology, most commonly
a pituitary tumor (90). Although there is little information
concerning the effects of pituitary neoplasia and its treatment
on lifestyle and physical fitness, there is extensive evidence
that these are impaired in survivors of other neoplastic dis-
eases (91–94).

Finally, most AO-GHD patients have other pituitary hor-
mone deficiencies (90). Interpretation of the effects of GHD
and GH replacement in this setting is complicated both by
interactions between the GH-IGF-I axis and other endocrine
axes and by the inherently unphysiological nature of pitu-
itary hormone replacement. In particular, glucocorticoid ex-
cess is characterized by similar features as GHD, including
reduced protein synthesis, reduced LBM and muscle mass,
increased body fat, and impaired exercise capacity (95–102).
Until recently, overreplacement with glucocorticoids was
almost universal in glucocorticoid-deficient patients and re-
mains common particularly in patients with hypopituitar-
ism, who are frequently only partially glucocorticoid defi-
cient (103). Studying the effects of GH replacement, while
maintaining the same glucocorticoid replacement dose, does
not entirely overcome the difficulty of separating the effects
of GHD from the effects of glucocorticoid excess because GH
replacement, through an effect mediated by IGF-I, inhibits
11�-hydroxysteroid dehydrogenase-1, which catalyzes the
conversion of cortisone to cortisol (104, 105) resulting in a
shift in cortisol metabolism favoring inactive cortisone (104,
105). Some of the effects of GH replacement therefore might
reflect reduced glucocorticoid exposure, particularly in pa-
tients receiving cortisone acetate in whom this effect is more
marked compared with hydrocortisone (106).

Interactions between the GH/IGF-I axis and thyroid hor-
mones and sex steroids may also be important. Thyroid hor-
mone replacement in the hypopituitary patient cannot be ti-
trated against serum TSH, the most sensitive index of tissue
activity of thyroid hormones, and thus subtle degrees of over-
and underreplacement with thyroid hormones likely occur in
hypopituitarism. GH, through increased 5�-deiodinase activity,
increases conversion of T4 to metabolically active T3 (7), and it
has been suggested that this effect might underlie some of the
metabolic changes observed with GH replacement (107, 108).
Untreated testosterone deficiency in males is associated with
reduced LBM, increased body fat, and reduced exercise capac-

TABLE 3. Body composition and the effect of treatment in adults with GHD and acromegaly, and the effect of GH administration in
normal subjects

GHD Normal subjects Acromegaly

Comparison with
normal subjects

Effect of
treatment

Effect of GH
administration

Comparison with
normal subjects

Effect of
treatment

LBM s a a a s
Skeletal muscle s a NK N N
Extracellular water s a a a s
Total body fat a s N s a

NK, Not known; a, increased; N, not different/unchanged; s, decreased.
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ity, whereas orally administered estrogen reduces fat oxidation
and increases body fat in normal women (109, 110). When
administered together, testosterone and GH exert a combined
effect on protein anabolism (Fig. 3) and body composition (111,
112), and there is increasing evidence that androgen deficiency
might also contribute to the phenotype of hypopituitary
women (113).

III. The GH-IGF-I Axis and Exercise in Normal Subjects

A. The acute and long-term effects of exercise on the GH/
IGF-I axis

In 1963 Roth et al. (3) demonstrated that plasma levels of
GH increase during exercise, and it was later shown that
exercise is the most potent physiological stimulus to GH
release (114). GH levels start to increase 10 to 20 min after the
onset of exercise, peak either at the end or shortly after
exercise, and remain elevated for up to 2 h after exercise
(115–117). The neuroendocrine pathways through which GH
secretion is regulated during exercise are complex and
poorly understood, but there is evidence that adrenergic,
cholinergic, and opioid pathways are involved (89). The
magnitude of the GH response to exercise is influenced by
age (118–120), gender (121–123), body composition (124–
126), physical fitness (118, 120, 127, 128), and the intensity
(114, 127, 129–133), nature (134–142), and duration (130,
143–145) of exercise (Table 4). The impact of these variables

has been more clearly defined in a recent series of meticu-
lously carried out studies using ultrasensitive chemilumi-
nescence GH assays and deconvolution analysis of GH se-
cretion. Pritzlaff et al. (133) carried out exercise tests at five
different exercise intensities normalized to each subject’s
lactate threshold. A linear dose-response relationship be-
tween exercise intensity and the GH secretory response was
demonstrated, with escalating GH release across the range
(25 to 175% of lactate threshold) of exercise intensities (Fig.
4). Deconvolution analysis revealed that increased GH levels
resulted from an increase in the mass of GH secreted per
pulse, with no change in pulse frequency or the half-life of
elimination. Later studies from the same laboratory demon-
strated that GH secretion correlates positively with duration
of exercise when intensity is constant (145), is augmented by
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FIG. 3. Percentage leucine oxidation and percentage non-
oxidative leucine disposal (NOLD) in hypogonadal GHD
subjects at baseline, after treatment with GH alone and GH
with testosterone (study 1), and at baseline, after treatment
with testosterone alone and GH with testosterone (study 2).
*, P � 0.05 vs. baseline. †, P � 0.05 vs. baseline and vs. GH
only. #, P � 0.05 vs. baseline and vs. testosterone only.
[Derived from Ref. 111. Adapted from J. Gibney et al.: Am J
Physiol Endocrinol Metab 289:E266-E271, 2005 (112) with
permission from The American Physiological Society.]

TABLE 4. The effect of physiological variables on the GH response
to exercise

Variable Effect

Age s
Gender N
BMI s
Fitness a
Exercise intensity a
Exercise duration a
Repetition of exercise a
Time of day N
Cold temperature s

a, Increased; N, no effect; s, decreased.
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repetitive bouts of exercise (146), but is not influenced by the
time of day that exercise was performed (147). Wideman et
al. (122) compared GH secretion at rest and during exercise
in men and women matched for age and physical fitness and
demonstrated that GH secretion rates under resting condi-
tions were greater in women; but during exercise, although
absolute GH secretion rates were also increased, the incre-
ment from baseline was similar in men and women and did
not correlate with sex hormones. This finding was confirmed
in a later study (123).

The GH response to exercise, like 24-hr GH secretion rates,
declines with aging, and it has been demonstrated that even
in early middle age (mean age, 42 yr), the GH response to
exhaustive exercise is greatly attenuated compared with
younger (mean age, 21 yr) subjects (119). It is difficult to
separate inherent effects of aging from changes in body com-
position, because body fat increases with aging and GH
secretory rates are reduced in overweight subjects (125, 126).
In a study designed to separate out the effects of aging, body
composition, and physical fitness, Holt et al. (120) compared
the GH response to exercise in four groups of male subjects:
lean young, overweight young, lean older, and overweight
older men. The GH response was found to be determined by
age and physical fitness (VO2max) but not by body fat, im-
plying that maintenance of physical fitness with increased
aging is more important in determining GH release than
avoidance of increased adiposity. However, training pro-
grams that improve physical fitness do not appear to increase
the GH response to exercise (119, 124).

The physiological mechanisms through which GH secre-
tion increases during exercise are not known, but changes in
body temperature (148), blood lactate levels (130), and pH
(149) have all been postulated. Supporting a role of body
temperature is the observation that the GH response to ex-
ercise is greatly attenuated during exercise in cold conditions

(148) and is proportional to core temperature (150). Against
an effect of lactate are the observations that infusion of so-
dium L-lactate does not increase GH secretion (127) (al-
though this experimental model differs significantly from an
exercise-induced metabolic acidosis), and as described above
there is a linear increase in GH secretion with increased
exercise intensity that can be observed before the lactate
threshold is reached (133). However, lactate production oc-
curs very early in exercise although it does not increase
substantially in blood until the Cori cycle is overwhelmed,
and therefore an effect on GH secretion cannot be completely
ruled out. There are little data concerning the effect of pH,
although one study has demonstrated reduced GH secretion
in response to exercise after alkali infusion (149).

Exercise exerts acute effects on other components of the
GH/IGF-I axis. GH-binding protein, total IGF-I, IGF binding
protein (IGFBP)-3, and acid-labile subunit increase slightly
during exercise, whereas IGFBP-1 increases after exercise
(151–156), and free IGF-I does not appear to change during
or after exercise (156). These observations are not altered
after adjustment for changes in hydration status during ex-
ercise (156). IGF-I, IGFBP-3, and acid-labile subunit circulate
as a ternary complex, and the observation that all three com-
ponents increase in parallel with no change in free IGF-I
suggests that these effects occur due to mobilization of pre-
formed intact complexes. Consistent with this, IGFBP-3 pro-
teolysis has been shown not to increase during or after stren-
uous rowing exercise (157). The physiological relevance of
these effects is not known, but it has been postulated that the
modest increase in IGF-I might enhance postexercise repar-
ative processes, or that increased IGFBP-1 might protect
against delayed onset hypoglycemia. There is currently no
evidence to support or refute these possibilities.

B. The relevance to exercise performance of the GH-IGF-I
axis in normal subjects

The strongest supporting evidence that an intact GH/
IGF-I axis exerts a long-term effect on exercise performance
comes from studies of exercise physiology in GHD subjects
and their response to GH replacement. The findings of these
studies and the limitations inherent in their interpretation are
discussed in detail under Section II. Whether the acute in-
crease in GH secretion that occurs in normal subjects in
response to exercise is also physiologically relevant is not
known. In the study of Kanaley et al. (64), acute elevation of
GH levels in a pattern similar to the physiological response
to exercise increased fatty acid availability during and after
exercise at 65% of VO2max. It is possible that this increase in
fatty acid availability would result in glycogen sparing and
increased exercise duration. However, because GH does not
usually begin to increase until at least 10 min of exercise has
elapsed and because, under resting conditions, the maximal
lipolytic response to a GH infusion does not occur until
approximately 120 min after the infusion has started (60), it
is physiologically more likely that GH would exert an effect
either during more prolonged low-intensity exercise or in the
recovery phase after moderate to high intensity exercise.
Consistent with this, Wee et al. (158) demonstrated an in-
crease in lipolysis that reached maximal levels more than 2 h

FIG. 4. The response of serum GH concentrations to exercise of dif-
ferent intensities. LT, Lactate threshold; Control, no exercise; 0.25LT,
25% of the difference between VO2 achieved at lactate threshold and
VO2 at rest; 0.75LT, 75% of the difference between VO2 achieved at
lactate threshold and VO2 at rest; 1.25LT, 25% of the difference
between VO2 achieved at lactate threshold and peak VO2; 1.75LT,
75% of the difference between VO2 achieved at lactate threshold and
peak VO2. Values are means � SE; n � 10 subjects. [Reproduced from
C. J. Pritzlaff et al.: J Appl Physiol 87:498–504, 1999 (133) with
permission from The American Physiological Society.]

Gibney et al. • GH and Exercise Endocrine Reviews, October 2007, 28(6):603–624 611

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/28/6/603/2355065 by guest on 23 August 2021



after 20 min of exercise at 70% of VO2max in healthy subjects,
and the magnitude of which correlated with the peak GH
response to exercise. In the same study, a similar effect was
reproduced under resting conditions using an infusion of GH
calculated to mimic the GH response to exercise.

Two alternative approaches to determine the acute effects
of GH in normal subjects are to administer an agent that
suppresses GH secretion or GH effect, or to correlate the GH
response to exercise in normal subjects with metabolic
changes during exercise. Chalmers et al. (159), under control
conditions and during an octreotide infusion to suppress
endogenous GH release, measured plasma metabolites in-
cluding glucose, glycerol, and FFA during 30 min of exercise
at 70% of VO2max and 90 min of recovery. No significant effect
of GH suppression was observed. This study is important
because it is the only one to date to use this approach to study
the effects of GH/IGF-I on exercise, but a number of limi-
tations must be considered. First, only six subjects were stud-
ied. Second, because no tracers were used, no conclusions can
be drawn regarding rates of appearance into and disappear-
ance from the circulation. Notably, in the study of Kanaley
et al. (64), no statistically significant effects of GH were ob-
served on plasma levels of FFA, despite marked effects on
FFA turnover. Finally, results might have been confounded
by other metabolic effects of octreotide (160). A similar study
using GH receptor antagonists (161), which would be more
specific for the effect of GH, and tracer techniques would
now be possible and would provide invaluable information.

Pritzlaff et al. (162), in recreationally trained men, studied
the response of GH and catecholamines during and after
exercise of varying intensity and related these responses to
changes in circulating metabolites and substrate oxidation.
During exercise, neither glucose oxidation, which was di-
rectly proportional to exercise intensity, nor fat oxidation,
which remained constant, was influenced by hormonal re-
sponses. Fat oxidation after exercise was related to exercise
intensity, and although it correlated independently with
both the peak GH and peak epinephrine response, using
multiple regression analysis, only the peak GH response was

found to be an independent predictor. There is evidence,
therefore, that endogenous GH secretion exerts an immedi-
ate and a delayed effect to increase fatty acid availability after
exercise (Fig. 5).

C. A potential role for GH in adaptation to training

Habitual exercise results in increased LBM and reduced
body fat, as well as metabolic effects that can be demon-
strated before these changes in body composition are de-
tectable. Repeated GH pulses in response to exercise and/or
the increment in GH secretion rates that occurs in response
to training could potentially contribute to these effects.

Endurance training over 4 months increases muscle pro-
tein synthesis (163), and recently an increase in mixed
muscle protein synthesis immediately after endurance ex-
ercise has been demonstrated (164). GH secreted in re-
sponse to exercise could contribute to this postexercise
protein anabolic effect either directly or indirectly through
increased lipolysis. Studies using animal models have
demonstrated that increasing fatty acid availability re-
duces leucine oxidation (165), and in untrained human
subjects, fat oxidation has been shown to correlate nega-
tively with oxidative protein loss (166). Further support
for modulation of the anabolic effects of GH through its
lipolytic effect comes from a recent study in which an
effect of GH to conserve protein during fasting was abol-
ished by administration of the antilipolytic agent, acipi-
mox (167). Administration of acipimox has also been used
to demonstrate that GH increases skeletal muscle triglyc-
eride content through its effect on insulin resistance (168).
The importance of this is unclear because increased skel-
etal muscle triglyceride is observed, apparently paradox-
ically, in both insulin-resistant subjects and endurance-
trained athletes (169).

Twenty-four-hour GH secretion rates and plasma IGF-I
levels correlate positively with VO2max and leisure time phys-
ical activity (170–173), whereas long-term exercise training
approximately doubles integrated GH concentrations in

EXERCISE

Plasma GH level

Lipolysis

Contribution of
GH to lipolysis

FIG. 5. Schematic representation of the possible associa-
tion between the GH response to exercise and lipolysis. The
shaded area represents the components of the lipolytic re-
sponse to exercise that are probably augmented by the GH
response to exercise. Because increased lipolysis during
exercise precedes increased plasma levels of GH and be-
cause of the delayed effect of a GH pulse to stimulate li-
polysis under resting conditions, it is probable that any
effect of the acute GH response to exercise on lipolysis oc-
curs in the postexercise period or during very prolonged
exercise.
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women when measured on nonexercising days (174). Levels
of IGFBP-3 and total and free IGF-I increase after training
(172, 175), increased IGF-I levels becoming detectable within
2 wk of commencing training (175) and remaining above
baseline for at least 6 months (176). These long-term effects
of exercise on the GH-IGF-I axis might also contribute to
some of the effects of training, including increased muscle
mass and increased CO, although evidence for this is cur-
rently lacking.

IV. Supraphysiological GH and Exercise
Performance

A. Effects of supraphysiological GH administration on the
metabolic response to exercise

Administration of supraphysiological GH to normal subjects
under resting conditions increases insulin secretion, lipolysis,
fatty acid availability, and fat oxidation, and reduces glucose
uptake into skeletal muscle (59, 60, 108, 177–180). More recently,
the effects of administration of supraphysiological GH on in-
termediate metabolism during exercise have also been ad-
dressed (Table 5). Lange et al. (181) demonstrated that plasma
levels of glucose, glycerol, FFA, and lactate were greater during
moderate to high-intensity exercise in trained men after ad-
ministration of a single dose of r-hGH, 2.5 mg sc, 4 h before
exercise. Healy et al. (182) studied glycerol and glucose turnover
using stable isotope techniques in endurance-trained athletes
before and during 4 wk of r-hGH (0.06 mg/kg�d) administra-
tion. r-hGH increased lipolysis and plasma levels of FFA at rest
and during and after submaximal exercise (Fig. 6). r-hGH did
not influence glucose turnover at rest but increased rates of
glucose production and uptake during and after exercise. The
findings of these two studies are consistent, although there were
important methodological differences. First, the study of Healy
et al. addressed the effects of prolonged rather than acute GH
administration. Second, the timing of GH administration in the
study of Lange et al. resulted in increased GH levels during
exercise in contrast to the study of Healy et al. in which GH
levels were lower during exercise. Finally, the study of Healy
et al. was carried out in the postabsorptive setting, whereas the
study of Lange et al. was carried out postprandially. Taken
together, the findings of these two studies demonstrate that GH
enhances lipolysis during exercise under both postabsorptive
and postprandial conditions and that the lipolytic effect of GH
during and after exercise does not depend on increased circu-
lating levels of GH during exercise. Despite increased fatty acid
availability, there was no effect of GH on fat oxidation during
or after exercise in either study or in two other studies in which
this was also addressed (183, 184), consistent with the effects of
GH on gene transcription in skeletal muscle described in Section
II.B.2 (66).
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FIG. 6. Lipolysis, estimated from the rate of appearance of glycerol
(top panel), and oxidative protein loss, estimated from leucine oxi-
dation (bottom panel) at rest and during and after exercise in endur-
ance-trained athletes (n � 6), before and after 4 wk of treatment with
GH, 0.066 mg/kg�d. *, P � 0.05 for the change from baseline. [Adapted
from Refs. 182 and 190 with permission. Copyright 2003 and 2006,
The Endocrine Society.]

TABLE 5. Studies that have investigated effects on strength or exercise performance of administration of supraphysiological GH to normal
or athletically trained subjects

Study M/F Design and duration Daily dose End-point Effect

Yarasheski et al.
1992 (186)

7/0 RCT 12 wk (with resistance
training)

0.04 mg/kg Strength No additional effect of GH on
muscle strength

Deyssig et al. 1993
(195)

8/0 DBPCT 6 wk 0.03 mg/kg Strength No effect of GH on muscle strength

Lange et al. 2002
(181)

7/0 DBPCT (single-dose
crossover)

2.5 mg 4 h preexercise Metabolic response during and
after bicycle exercise

GH increased plasma glucose,
glycerol, FFA and lactate during

exercise
Healy et al. 2003

(190)
6/0 DBPCT 4 wk 0.067 mg/kg Protein turnover during and after

bicycle exercise
GH reduced oxidative protein loss

during and after exercise
Irving et al. 2004

(184)
9/0 RCT – GH � 5 studies/

saline � 1 study
0.01 mg/kg, 0.75–3.75 h

preexercise
Power output, indirect calorimetry,
metabolic response and perceived

exertion during cycling

GH reduced oxygen consumption
during exercise with unchanged

power output
Hansen et al. 2005

(183)
7/0 RCT – GH/ placebo at rest/

exercise
2.5 mg 4 h preexercise Indirect calorimetry during 120 min

of bicycle exercise
GH did not increase in fat oxidation
despite increased FFA availability

Berggren et al. 2005
(212)

10/10 DBPCT 4 wk 0.033 or 0.067 mg/kg Power output and indirect
calorimetry during bicycle exercise

No effect of GH

Healy et al. 2006
(182)

6/0 DBPCT 4 wk 0.067 mg/kg Glucose and fat metabolism during
and after bicycle exercise

GH increased lipolysis and glucose
turnover during and after exercise

M/F, Number of male/female subjects who received GH in each study; RCT, randomized controlled trial.
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B. Effects of supraphysiological GH administration on
protein metabolism and muscle mass

A number of small studies have addressed the effect of
supraphysiological GH administration to normal or trained
subjects on protein metabolism with some conflicting find-
ings. Observations vary between studies of athletic and non-
athletic subjects, and between those of whole-body protein
turnover and muscle protein synthesis. Horber and Hay-
mond (185) demonstrated no change in whole-body protein
breakdown but an increase in protein synthesis after admin-
istration of 0.1 mg/kg�d of r-hGH to untrained males for 1
wk. Using a lower dose (0.04 mg/kg�d), Yarasheski et al. (186)
observed an increase in whole-body, but not muscle, protein
synthesis in untrained men after 12-wk administration of
r-hGH. However, the same group observed no change in
whole-body protein synthesis after 14-d administration of
the same dose to experienced weight lifters (187). In contrast,
Fryburg et al. (188) demonstrated that infusion of GH for 8 h
to untrained males resulted in increased muscle, but not
whole-body protein synthesis. The observation that whole-
body protein synthesis did not change in the studies of Fry-
burg et al. possibly reflects a difference between acute and
more long-term effects of GH. Notably, the effects of GH on
carbohydrate metabolism are known to differ markedly, de-
pending on duration of exposure to GH (71). The observa-
tions by Yarasheski et al. (186, 187) that GH increased whole-
body protein synthesis in normal subjects, but not in weight
lifters, may be due to methodological issues or might rep-
resent a differential response in resistance-trained subjects.
Muscle, which is already hypertrophied, may have less po-
tential to increase further. It is unlikely that the differences
between those studies reflect a different period of adminis-
tration, because measurable effects were clearly demon-
strated after 1 wk in the study of Horber and Haymond (185).

Exercise exerts a significant influence on protein metabolism
(189). Whole-body and muscle protein breakdown increase
during exercise, whereas oxidation of certain amino acids, in-
cluding leucine, increases during exercise. It is therefore ap-
parent that studies of protein metabolism in the resting state
may fail to recognize important changes occurring during or
after exercise. Whole-body leucine turnover at rest and during
exercise was also reported in the study of supraphysiological
GH administration to athletes described under Section IV.B
(190). At rest, after 1 wk of r-hGH administration, there was a
net reduction in leucine oxidation and a net increase in protein
synthesis, changes that were accentuated after 4 wk of r-hGH
administration. As previously observed (189, 191–193), before
r-hGH administration, leucine oxidation increased more than
2-fold during exercise. r-hGH administration reduced leucine
oxidation during exercise by more than 50%, compared with a
reduction under resting conditions of 29% (Fig. 5).

r-hGH administration has been consistently shown to in-
crease LBM in young normal or trained subjects, but it is not
known how much of this increase is secondary to protein ac-
cretion and how much to increased total body water (TBW)
secondary to the antinatriuretic effect of GH (194). Using mea-
surement of skinfold thicknesses, Deyssig et al. (195) demon-
strated no change in LBM after 6 wk of treatment with r-hGH,
0.03 mg/kg�d. Using hydrodensitometry and measurement of

TBW with dilution techniques, Yarasheski et al. (186) demon-
strated an increase in both fat free mass and TBW after 12 wk
of treatment with r-hGH, 0.04 mg/kg�d. Crist et al. (196), also
using hydrodensitometry, demonstrated an increase in fat free
mass and a reduction in percentage body fat after 6 wk of
treatment with met-hGH. Healy et al. (190) demonstrated a
mean increase in fat-free soft tissue mass of 3.8 kg using dual-
energy x-ray absorptiometry scanning. Although this tech-
nique, like hydrodensitometry, does not differentiate metabol-
ically active body cell mass from extracellular water, the
observed reduction in resting leucine oxidation data would
predict a mean increase in body protein of 0.6 kg over 28 d,
representing an increase of approximately 5% based on nor-
mative data (197).

There is evidence, therefore, that supraphysiological GH ad-
ministration to trained subjects results in conservation of pro-
tein and that this effect is particularly marked during exercise.
As described under Section III.B, protein anabolic processes are
influenced by fatty acid availability, and therefore it is possible
that these effects are secondary to the lipolytic effect of supra-
physiological GH. Figure 6 demonstrates the reciprocal rela-
tionship between lipolysis and oxidative protein loss demon-
strated in the studies of Healy et al. (182, 190). Evidence that
changes in body composition after administration of supra-
physiological GH are functionally important is considered in
Sections V and VI.

C. Exercise performance and strength in acromegaly

Patients with acromegaly represent a useful model to study
the chronic effect of GH excess, although the potentially con-
founding influence of duration of disease, recovery from long-
term illness, and the effects of other hormone deficiencies and
replacement must be considered. Acromegaly is characterized
by marked abnormalities in protein (198) and carbohydrate
(199–202) metabolism and at least late in the disease process,
impairments in strength and exercise performance. Protein re-
modeling in long-standing acromegaly is abnormal in most
organ systems, including skeletal muscle, resulting in tissue
disorganization and functional impairment, and in some cases
cardiomyopathy. Despite an increase in muscle mass, histolog-
ical examination of muscle fibers reveals a myopathic process,
and physical strength is reduced rather than increased (15).
Nagulesparen et al. (15) carried out muscle biopsies on 18 ac-
romegalic patients and showed abnormalities in more than half,
typically hypertrophy of type 1 fibers and atrophy of type 2
fibers. The degree of abnormality correlated positively with
circulating GH levels.

Long-standing acromegaly is also associated with impair-
ment in aerobic exercise capacity and cardiac performance.
VO2max and VeT are reduced in patients with acromegaly, com-
pared with normal subjects, and improve after treatment with
octreotide (203). Colao et al. (204) using radionucleide angiog-
raphy studied cardiac performance during exercise in acrome-
galic subjects and normal controls. The LVEF response to ex-
ercise was reduced in acromegalic subjects and correlated
inversely with age and duration of acromegaly. The same in-
vestigators later reported that normalization of GH and IGF-I
levels after 1 yr of treatment with octreotide was associated with
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improvement in, but not normalization of, LVEF both at rest
and during exercise (205).

Although these findings suggest that long-term GH excess is
likely to be detrimental to exercise performance, it should be
noted that clinical features of acromegaly are usually present for
some years before diagnosis, and that biochemical GH excess
precedes the appearance of clinical signs. Although cardiac
function is typically found to be impaired in long-standing
acromegaly, Fazio et al. (206) have demonstrated that in acro-
megaly of less than 5-yr duration, certain potentially beneficial
components of cardiac function including stroke index and
cardiac index are increased, and SVR is reduced. Important
differences have also been demonstrated in the acute and long-
term effects of treatment of acromegaly. Normalization of IGF-I
levels in patients with acromegaly results in an increase in
oxidative protein loss (representing net protein catabolism) that
is not sustained but a reduction in protein remodeling that is
sustained (207). Extrapolating these findings to acute and long-
term GH excess would imply an initial anabolic phase (evi-
dence for which is described under Section III.A) followed by a
later phase when body protein mass remains stable but when
there is a potentially deleterious effect on protein remodeling.
It is therefore possible that there is a window in which the
potentially beneficial effects of supraphysiological GH predom-
inate, and indeed one of the authors reports such an occurrence
in an elite oarsman (P. H. Sönksen, personal communication).
A possible mechanism through which these effects might occur
is demonstrated in Fig. 7.

V. GH Abuse in Sport

A. GH as a putative performance-enhancing agent

GH was recommended in “The Underground Steroid
Handbook” (10) in 1983 as “a new and exiting anabolic
agent” approximately 7 yr before any publication suggesting
that this effect occurred in adults appeared in the scientific
literature. Ben Johnson was disqualified from the gold medal
position in the 100 m in the 1988 Olympic Games and sub-
sequently admitted under oath to having self-administered

GH as well as anabolic steroids. Although it is clear that GH
abuse by athletes is widespread (208–211), there is no evi-
dence of its efficacy. The most plausible mechanisms by
which administration of supraphysiological doses of GH
could improve exercise performance are through increased
muscle mass and strength and through increased fatty acid
availability resulting in glycogen sparing and increased en-
durance. Only two studies, with seven and eight subjects,
respectively, receiving GH, have investigated the effect of
GH on strength in young normal or trained subjects (186, 195)
(Table 5). Neither demonstrated any significant improve-
ment, although the studies were of short duration and almost
certainly lacked statistical power to detect a meaningful dif-
ference. There is also no evidence that GH improves endur-
ance. Berggren et al. (212) administered supraphysiological
GH for 28 d to healthy active normal subjects and found no
change in VO2max or maximal power output during cycling.
In the study reported by Lange et al. (181), GH administration
led to a significant increase in plasma lactate during 90 min
of cycling at 65 and 75% of VO2max during GH administra-
tion, and predictably, this was associated with reduced ex-
ercise performance in some subjects. It is not known whether
GH administration for longer duration might be more ef-
fective, but notably changes in strength in GHD adults have
proved difficult to convincingly demonstrate in studies of
6-month duration and are more obvious after 2 yr.

However, to put these unimpressive scientific findings
into context, anabolic steroids were widely abused for more
than 40 yr (14) before they were definitively shown to in-
crease strength (213), and the pattern of GH abuse by athletes
may differ considerably from controlled clinical trials. In
particular, there is evidence of an additive effect between
testosterone and GH (112), and trials of their combined ad-
ministration to athletes have not yet been reported. Further-
more, the marginal changes that differentiate winning from
losing in high-level sport are unlikely to be detected in clas-
sical clinical trials, which are usually statistically powered to
distinguish much larger differences. Athletes and coaches,
who meticulously monitor their own performance, can de-
tect much smaller changes with different interventions that

Protein
remodelling

Net protein
synthesis

Body protein
mass

Strength

Baseline

Short-termGHexcess

Long-termGHexcess

?

FIG. 7. Schematic representation of the effects of short-
term and long-term GH excess. Question mark indicates
a possible, but unproven, short-term effect of supra-
physiological GH to increase strength.

Gibney et al. • GH and Exercise Endocrine Reviews, October 2007, 28(6):603–624 615

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/article/28/6/603/2355065 by guest on 23 August 2021



could not be identified in small or medium-sized clinical
trials. This has been demonstrated in secret doctoral theses
pertaining to the sports doping program of the German Dem-
ocratic Republic (214), which became available in the early
1990s after German reunification. In these papers, it is clearly
shown that the principal method used by doctors and
coaches to evaluate the effects of anabolic steroids was by
comparing performance targets in individual athletes when
taking and not taking different agents.

B. Tests to detect GH doping by athletes

It is important to detect abuse of GH in the interest of fair
competition and also because, as illustrated by the pathophys-
iological model of acromegaly, long-standing elevation of GH
and IGF-I is detrimental to health (215). However, a number of
factors complicate GH detection. Exogenous r-hGH and en-
dogenous GH have identical amino acid sequences, making
chemical distinction impossible. GH is secreted in a pulsatile
manner; is under the influence of stress, exercise, sleep, and
food intake (89); and has a very short half-life in the circulation
(216), resulting in serum concentrations that vary widely
throughout the day and frequently overlap with measurements
obtained after exogenous administration of GH. The concen-
tration of GH (like other proteins) in urine varies markedly with
exercise and has been previously demonstrated to be insensi-
tive as a marker of either GH administration or acromegaly
(217, 218). It is very likely, therefore, that any useful test for GH
abuse will involve blood sampling, which represents a major
change from the long-established antidoping methods that are
based on postcompetition urine tests.

To date, two approaches to detection of GH administration
have shown promise. The first approach involves measurement
of serum markers of GH action and has largely been developed

through the work of the GH2000 and GH2004 projects. Serum
levels of IGF-I, IGFBP-2, IGFBP-3, and the bone markers bone-
specific alkaline phosphatase, carboxy-terminal propeptide of
type I procollagen, carboxy-terminal cross-linked telopeptide of
type I collagen, and procollagen type III (PIIIP) were identified
in a pilot study (156, 219–222) as having characteristics poten-
tially useful in detection of exogenous GH administration.
These included a clear response to exogenous GH administra-
tion, a much smaller response to acute exercise, day-to-day
stability within subjects, clear separation between GH and pla-
cebo-treated subjects, and persistence of elevated concentra-
tions for many days after the last GH injection. A subsequent
double- blind, placebo-controlled trial (DBPCT) demonstrated
that 28 d of self-administration of two doses of GH (0.067 and
0.133 mg/kg�d) predictably altered these markers. Notably,
plasma levels of bone and connective tissue turnover remained
elevated for significantly longer than components of the IGF-
IGFBP axis, up to 8 wk after cessation of GH in the case of
osteocalcin and PIIIP (219, 221). Reference data from elite ath-
letes in the postcompetition setting were obtained in a cross-
sectional study, in which it was demonstrated that after ad-
justment for the effects of age there was little or no effect of
auxological characteristics or the type of sport performed on
any of these variables (223). Interestingly, the age-associated
decline of plasma IGF-I observed in that study was at least as
marked as that previously observed in normal sedentary pop-
ulations (224–226), which is highly suggestive that the decline
in GH-IGF-I activity is an inexorable feature of the aging process
and is not attenuated by maintaining physical fitness (Fig. 8).

From the studies described above, equations using multiple
markers (which have improved sensitivity and specificity com-
pared with single markers) were derived, and the most useful
test based on these studies appears to be a gender-specific

IGF-I (ng/ml)

ALS (nmol/ml)IGFBP-3 (ng/l)

IGFBP-2 (µg/l)

Age (years) Age (years)

FIG. 8. Age-dependent change in com-
ponents of the IGF/IGFBP system in
537 elite male (�) and 276 elite female
(E) athletes. Reference ranges for male
(solid lines) and female (dashed lines)
athletes are shown. [Reproduced from
Ref. 223 with permission. Copyright
2006, The Endocrine Society].
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discriminant function that includes IGF-I and PIIIP and is ad-
justed for age (227). Some outstanding issues remain however
before these formulae can be generally applied. First, more data
are required from athletes of ethnic groups other than Cauca-
sians. In this regard, it was interesting that in the cross-sectional
study described above (223), plasma levels of IGFBP-2 and
IGFBP-3 differed in black subjects, an observation that clearly
requires further exploration. Second, it is important to know the
effect of concurrent administration of androgenic or estrogenic
agents, both of which can exert effects on the GH/IGF-I axis.
Finally, the effect of injury, particularly on markers of bone and
connective tissue, must be excluded as a potentially confound-
ing variable.

The second potentially useful approach to developing a test
for GH abuse involves simultaneous RIA of the natural iso-
forms and fragments of GH, the two most commonly occurring
being 22-kDa GH and 20-kDa GH. Exogenous administration
of supraphysiological doses of r-hGH, which consists exclu-
sively of 22-kDa GH, suppresses endogenous GH secretion and
therefore increases the ratio in plasma of 22-kDa to 20-kDa GH
(228). Preliminary studies evaluating this approach have shown
promise (229, 230), although in view of the short half-life of GH
in the circulation, this test is only likely to be effective if sam-
pling is carried out within 24 h of the last GH injection. Fur-
thermore, there is a more marked increment in circulating 22-
kDa GH compared with 20-kDa GH levels in response to
exercise (229), and therefore the sensitivity of the test could be
reduced in the postcompetition setting. Pituitary-derived GH
consisting of multiple isoforms and fragments is still in circu-
lation, and its use will not be detected. Finally, it must be
considered that recombinant 20-kDa GH has also been synthe-
sized, and therefore appropriate combinations of 20- and 22-
kDa r-hGH could potentially confound this test. Of note, this
test was introduced in the Olympic Games in 2004 and the
Winter Olympics in 2006, but no positive tests were recorded.

It must also be considered that in addition to self-adminis-
tration of GH, other technologies to manipulate the GH/IGF-I
axis are emerging. These include gene doping, GH secreta-
gogues, recombinant human IGF-I (r-hIGF-I) and r-hIGF-I/
recombinant IGFBP-3 complex. In animals, injection of a re-
combinant adenoassociated virus genetically manipulated to
induce myocyte overexpression of IGF-I induced a 15% increase
in muscle mass and a 14% increase in muscle strength without
inducing a systemic increase in IGF-I (231). There are few data
concerning the effects of r-hIGF-I administration on exercise
performance, although one paper demonstrated that a single
r-hIGF-I injection to healthy male volunteers 2–4 h before ex-
ercise increased SV, CO, and EF, but did not influence exercise
duration or VO2max (232). However, because the effects of GH
on these variables appear to be at least partially mediated
through increased muscle mass, it is not surprising that a short-
term effect would not be detectable.

VI. Therapeutic Possibilities Related to Exercise
Performance of Supraphysiological GH Administration

In contrast to athletes, in whom GH secretory rates are
normal or increased, elderly and obese subjects secrete less
GH compared with young subjects with normal body mass

index and therefore might be more likely to benefit from GH
administration. The first major study to explore the possi-
bility that GH might ameliorate some of the changes in body
composition and functional ability that occur with aging was
reported by Rudman et al. (233), who demonstrated in-
creased LBM, skin thickness, and bone mineral density, and
reduced total body fat after administration of GH for 6
months to older men. However, despite confirming these
potentially beneficial changes in body composition, subse-
quent studies demonstrated little or no improvement in
strength or functional ability increase after administration of
GH alone (233–235) or in combination with exercise training
(236, 237) to elderly subjects. These disappointing findings
might reflect difficulties in determining the most appropriate
dosing regime because side effects related to overdosage
were common, or alternatively that because production of
both GH and testosterone declines with age and because
these two anabolic hormones exert an additive effect treat-
ment with either hormone in isolation might be ineffective.

Three recent well-designed studies have addressed the
possibility that GH and testosterone in combination might be
more efficacious than either hormone alone. In a 26-wk DB-
PCT, small increases in muscle strength and VO2max that
correlated with increases in LBM were demonstrated in men
who were treated with combined GH and testosterone (238).
Notably, deterioration in glucose tolerance occurred in a
significant number of subjects. A small crossover study com-
pared the effect of administration of testosterone, GH, and
combined testosterone and GH in doses chosen to approx-
imate physiological production rates for 1 month each to
elderly men (85). Small improvements were seen in some
indices of physical function, including walking and climbing
stairs, after administration of either hormone alone or in
combination, and improvement in balance was seen after
treatment with GH alone. The effects of administration of GH
and testosterone alone and in combination for 6 months to
healthy elderly men were studied in a more recent well-
powered DBPCT (239). The dose of GH was titrated to
achieve plasma IGF-I levels in the upper half of the normal
range, and a transdermal preparation of testosterone was
administered daily that resulted in plasma testosterone lev-
els within the normal range. LBM increased with GH alone,
whereas there was an increase in muscle mass and a reduc-
tion in total body fat after combined treatment. VO2max also
increased significantly in patients who received combined
treatment compared with those who received placebo and
those who received either treatment alone. Overall, the com-
bined effect of the two hormones was additive rather than
synergistic. Of note, all of these studies have been relatively
short-term and as described under Section II.B, improve-
ments in strength in GHD adults have only been clearly
identified after 2 yr of treatment.

Fewer studies have addressed the effects of GH on phys-
ical performance in overweight or obese normal subjects. No
additional effect on muscle strength or VO2max was observed
after addition of either GH or IGF-I or a combination of both
to a 12-wk program of exercise and weight loss in overweight
women, despite increased fat-free mass and reduced total
body fat with GH alone or in combination (240). No addi-
tional effect of GH on muscle strength or anaerobic power
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output during jumping was observed in 3-wk study that
compared the effect of weight reduction and strength train-
ing alone or with the addition of GH (44).

VII. Summary and Conclusions

Studies in GHD adults have provided evidence to support
the postulate, first made by Hunter and associates more than
40 yr ago, that the metabolic effects of GH might be important
in exercise performance. Adult GHD is associated with a
decrease in VO2max that is proportional to the well-docu-
mented reduction in skeletal muscle mass, and a decrease in
VeT that reflects a reduction in the intensity of exercise that
can be carried out aerobically and potentially explains re-
duced energy levels. DBPCTs have, in general, demonstrated
that GH replacement improves exercise performance, prob-
ably through a combination of increased delivery of oxygen
to exercising muscle, increased FFA availability and fat ox-
idation, increased muscle mass and strength, reduced body
fat and improved thermoregulation. Despite potentially con-
founding variables including the unphysiological nature of
GH replacement, the long-term effects of recovery from se-
rious illness and interactions with other hormonal axes, these
observations provide evidence that an intact GH-IGF-I axis
is important in maintaining normal exercise capacity.

There is also evidence that the acute GH response to ex-
ercise in concert with reduced circulating insulin levels is
important in regulating fatty acid availability in the postex-
ercise setting, and it is possible that this effect contributes to
the changes in body composition and exercise performance
that occur as a result of training. It is also possible that the
acute GH response also contributes to the protein anabolic
effect of exercise, either directly or through increased fatty
acid availability, although this remains unproven.

The effects of administration of supraphysiological doses
of GH to subjects with an intact GH/IGF-I axis potentially
differ between athletically trained subjects, in whom pro-
duction of GH and IGF-I is normal or increased, and elderly
or obese subjects in whom GH secretion rates are decreased.
Administration of supraphysiological doses of GH to ath-
letes increases fatty acid availability and reduces oxidative
protein loss at rest and during and after exercise and exerts
potentially beneficial effects on body composition. Although
there is little scientific evidence that these effects translate to
improved performance, GH abuse has been widespread
among athletes for more than 20 yr. The two most promising
approaches to detection of GH abuse involve measurement
of serum markers of GH action and measurement of the
relative proportions in serum of the naturally occurring iso-
forms of GH.

There is preliminary evidence that GH treatment is useful
in improving body composition and exercise performance in
elderly subjects particularly when used in association with
testosterone. In contrast, there is no evidence that GH im-
proves physical performance in obese subjects, although
there have been a few studies with small numbers of patients
carried out over short duration. It will be important, when
considering the role of GH treatment in these or any other
subject groups, to balance potential gains with the safety

concerns associated with maintaining supraphysiological
GH levels.
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