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Regulation and limitations to fatty acid oxidation
during exercise

Jacob Jeppesen and Bente Kiens

Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Denmark

Abstract Fatty acids (FAs) as fuel for energy utilization during exercise originate from different
sources: FAs transported in the circulation either bound to albumin or as triacylglycerol (TG)
carried by very low density lipoproteins and FAs from lipolysis of muscle TG stores. Despite a high
rate of energy expenditure during high intensity exercise the total FA oxidation is suppressed to
below that observed during moderate intensity exercise. Although this has been known for many
years, the mechanisms behind this phenomenon are still not fully elucidated. A failure of adipose
tissue to deliver sufficient FAs to exercising muscle has been proposed, but evidence is emerging
that factors within the muscle might be of more importance. The high rate of glycolysis during
high intensity exercise might be the ‘driving force’ via the increased production of acetyl-CoA,
which in turn is trapped by carnitine. This will lead to decreased availability of free carnitine for
long chain FA transport into mitochondria. This review summarizes our present view on how FA
metabolism is regulated during exercise with a special focus on the limitations in FA oxidation in
the transition from moderate to high intensity exercise in humans.
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Introduction

The work by Krogh and Lindhard and Christensen and
Hansen in the 1920s and 1930s demonstrated, from
measurements of the respiratory exchange ratio (RER),
that fatty acid (FA) oxidation increased 5- to 10-fold above
resting levels during mild to moderate exercise and peaked
at exercise intensities around 65% of maximal oxygen
uptake (V̇O2,peak) (Krogh & Lindhard, 1920; Christensen
& Hansen, 1939). When exercise intensity increased
further, FA oxidation progressively decreased. Today a
remaining unsolved question is: What are the limitations
and regulation of skeletal muscle FA oxidation at high
exercise intensities?

This review is from the symposium Exercise metabolism at The
Biomedical Basis of Elite Performance, a joint meeting of The Physio-
logical Society and the British Pharmacological Society, together with
The Journal of Physiology, Experimental Physiology, British Journal of
Pharmacology and The Scandinavian Journal of Medicine and Science in
Sports, at the Queen Elizabeth Hall, London on 20 March 2012.
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Delivery of FA

Plasma FA to the working muscle is primarily supplied
from lipolysis of triacylglycerol (TG) stored in adipose
tissue. During low to moderate intensity exercise
lipoprotein lipase (LPL) mediated hydrolysis of plasma
TG also delivers a minor amount of FA to the total plasma
FA concentration (Kiens et al. 1993; Morio et al. 2004;
Sondergaard et al. 2011). The contribution of FA derived
from plasma TG hydrolysis at higher exercise intensities
remains, however, to be elucidated.

When whole body exercise was studied by the use of
isotopically labelled long chain FAs in endurance trained
men, the results confirmed the classical findings from the
1920s and 1930s that total FA oxidation was higher during
moderate exercise at 65% of V̇O2,peak compared to exercise
performed at 25% or 85% of V̇O2,peak (Romijn et al. 1993).
Despite the relatively high rate of energy expenditure
during exercise at high intensities, rate of disappearance
(Rd) of plasma FAs and FA oxidation was decreased to
values below those observed during moderate intensity
exercise.

The inability of FA oxidation to support the energy
demand during high intensity exercise could be reflected
in either a failure of adipose tissue lipolysis, and thus
insufficient delivery of FA to the exercising muscle, or
a limitation in skeletal muscle to oxidize FAs. A failure
in adipose tissue to supply the exercising muscle with
sufficient FAs could be due to either a lack of stimulus
to adipose tissue lipolysis or an inadequate perfusion
of the adipose tissue. It has been shown that plasma
catecholamine concentration, one of the major regulators
of lipolysis in adipose tissue in humans, increases almost
exponentially with exercise intensity (Galbo et al. 1975;
Romijn et al. 1993). In the study by Romijn et al., glycerol
rate of appearance (Ra), which was used to determine
adipose tissue lipolysis (Romijn et al. 1993), was not
reduced during whole body exercise at 85% of V̇O2,peak

compared to exercise at 65% of V̇O2,peak (Romijn et al. 1993)
implying that adipose tissue lipolysis was not reduced at
the high exercise intensity. An important point here is
that Ra of glycerol reflects both adipose and muscle tissue
lipolysis as well as LPL mediated hydrolysis of very low
density lipoprotein (VLDL) bound TG. However, even
though the net glycerol balance across skeletal muscle
points towards glycerol release being substantial at rest
(Stallknecht et al. 2004; Wallis et al. 2007), glycerol is
both released and taken up by the leg resulting in low net
release during exercise (van Hall et al. 2002; Stallknecht
et al. 2004; Wallis et al. 2007). In a study performed by
Stallknecht et al. (2004), the glycerol concentration in the
interstitial space was measured using the microdialysis
technique. Here it was demonstrated that the skeletal
muscle interstitial glycerol concentration increased during

low intensity exercise (25% of V̇O2,peak), indicative of
a net release of glycerol from muscle. However, a net
release of glycerol did not occur at moderate and high
intensity one legged knee extensor exercise (Stallknecht
et al. 2004). In contrast, subcutaneous adipose tissue
interstitial glycerol concentration, which was ∼10-fold
higher than in skeletal muscle, increased with increasing
intensities up to 85% of maximal leg work capacity
(Stallknecht et al. 2004) supporting that the contribution
from skeletal muscle to the arterial glycerol concentration
during moderate and high intensity exercise is relatively
small compared to that released from adipose tissue. At
higher exercise intensities the high plasma catecholamine
concentration can lead to inhibition of adipose tissue
lipolysis by α-adrenergic mechanisms (Frayn, 2010).
Moreover, the high sympatho-adrenal response during
whole body exercise can induce a reduction in adipose
tissue blood flow (Bulow & Madsen, 1981). This might
explain why a decrease in long chain FA Ra from
adipose tissue was observed during high intensity exercise
compared to both low and moderate exercise (Romijn
et al. 1993; van Loon et al. 2001). This coincided with
a reduction in plasma FA concentration and oxidation.
On the other hand, when plasma FA concentrations were
increased to 2 mmol l−1 by infusion of a lipid emulsion
and heparin (increasing the activity of LPL in plasma
and thus VLDL-TG hydrolysis) during high intensity
exercise, FA oxidation increased only 27% compared to
exercise at the same intensity without infusion of intra-
lipid. Importantly, FA oxidation was only partially restored
when compared to levels observed at 65% of V̇O2,peak

even though the plasma concentration of FAs was above
2 mmol l−1 (Romijn et al. 1995). These findings were
further extended by van Loon et al. (2001), who reported
a decrease in both plasma FA oxidation and total FA
oxidation during high intensity exercise (72% V̇O2,peak)
compared to moderate intensities at 44% and 55% of
V̇O2,peak, despite no change in plasma FA availability. In
addition, when whole body exercise was performed in
healthy male volunteers the plasma concentration of FA
decreased by 23% during high intensity workload (90%
V̇O2,peak) compared to an exercise workload of 65% V̇O2,peak

(Kiens et al. 1999). Concomitantly with the decrease in
plasma FA concentration at the high exercise intensity, an
accumulation of intramyocellular FA was observed (Kiens
et al. 1999). Together these findings strongly indicate that
limitations in FA oxidation at high exercise intensities are
not due to failure of adipose tissue to deliver FAs and that
the decrease in FA oxidation during high exercise intensity
is due to limitations within the muscle cell. The decline
in plasma FA concentrations at the very high exercise
intensities may to be coupled with an inability of muscle
to use the FA.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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Transsarcolemmal FA transport

Within the past years several membrane bound lipid
binding proteins have been identified in human skeletal
muscle and increasing evidence is emerging that these
proteins either individually or in complexes act as
regulators of FA transmembrane transport (Fig. 1).
However, the mechanism by which this occurs is unknown.
The 43 kDa membrane bound fatty acid binding protein
(FABPpm) and the 88 kDa fatty acid translocase CD36
(FAT/CD36) proteins are currently the best described
lipid binding proteins in human skeletal muscle (for
detailed review see Glatz et al. 2010). Recent studies have
suggested a role for FAT/CD36 in the acute increase in
FA uptake in skeletal muscle seen in the transition from
rest to exercise (Bonen et al. 2000; Jeppesen et al. 2011).
This idea of FAT/CD36 as a dynamic regulator of FA
uptake originates from Bonen et al. (2000), who showed
that [3H]palmitate transport into giant sarcolemmal
vesicles (GSVs) was higher in GSVs from contracted
rat muscle compared to resting muscle. Furthermore,
this change was correlated with a contraction induced
increase in membrane FAT/CD36 protein content (Bonen
et al. 2000). In further support, it was shown that the
contraction induced increase in FA oxidation was greater

in isolated soleus muscle from transgenic mice over-
expressing FAT/CD36 protein compared to their WT
controls (Ibrahimi et al. 1999), even though resting FA
oxidation was similar. This could indicate that a greater
relocation of FAT/CD36 protein from an intracellular
compartment to the plasma membrane during muscle
contraction had occurred in the transgenic mice. In turn,
this might have facilitated the higher flux in FA metabolism
compared to WT mice.

The question is whether the transsarcolemmal transport
is limiting for FA oxidation at higher exercise intensities.
As mentioned above, an accumulation of intramyocellular
FAs was observed in human vastus lateralis muscle when
exercise intensity was increased from 65% V̇O2,peak to 90%
V̇O2,peak despite a decrease in plasma FA concentration
(Kiens et al. 1999), suggesting that the transport across
the sarcolemma was not limiting FA oxidation at high
exercise intensities. Data from studies in the perfused rat
hindlimb model (Raney & Turcotte, 2006) have revealed a
relation between FA uptake and oxidation, but only at low
to moderate contraction intensities. When increasing to
higher intensities, FA uptake was still elevated compared
to basal levels, despite FA oxidation being decreased to
resting values (Raney & Turcotte, 2006), supporting the

Figure 1. Simplified overview of lipid and glucose metabolic pathways in skeletal muscle
LPL, lipoprotein lipase; VLDL-TG, very low density lipoprotein triacylglycerol; FA, fatty acids; AlbFA, albumin
bound fatty acids; AlbR, albumin receptor; FABPpm, plasma membrane fatty acid binding protein; CD 36, fatty
acid translocase 36; ACS, acyl-CoA synthase; IMTG, intramyocellular triacylglycerol; ATGL, adipose triglyceride
lipase; HSL, hormone-sensitive lipase, MGL, monoglycerol lipase; CPT-1, carnitine palmitoyltransferase; G-6-P,
glucose-6-phosphate; HK II, hexokinase II.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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notion that the transport of FAs across the membrane is
not a limiting factor for FA oxidation when switching to
higher exercise intensities.

Intramyocellular TG

Intramyocellular triacylglycerol (IMTG) stored within
striated muscle cells represents a large energy source,
contributing to FA oxidation. To what extent IMTG is
utilized during exercise varies depending on intensity,
duration and mode of exercise, dietary status, pre-exercise
IMTG levels, training status of the subjects and sex (for
review see Kiens, 2006). When applying the 1H-MRS
technique to male volunteers running at 60–70% of
V̇O2,peak, a decreased IMTG content in both the soleus and
tibialis anterior muscles was observed, whereas running at
80–90% of V̇O2,peak did not cause changes in IMTG content
in either muscle (Brechtel et al. 2001). Similarly, IMTG
breakdown did not occur at high intensity exercise in the
knee-extensor model (Stallknecht et al. 2004; Helge et al.
2007) when different methods for IMTG analysis were
applied. However, these observations are all of net break-
down of IMTG. Recent findings from resting conditions in
female and male subjects, using pulse–chase methods by
intravenous infusions of two distinct isotopically labelled
FAs combined with mass spectrometry measurements of
intramuscular lipids, revealed that upon uptake by the
muscle, plasma FA was not directly converted to long
chain acylcarnitine (LCAC) and oxidized, but traversed
the IMTG pool prior to oxidation (Kanaley et al. 2009).
Whether FA taken up by muscle during exercise also
undergoes esterification and then subsequent hydrolysis
prior to mitochondrial entry is unknown.

Lipolysis of IMTG is regulated by adipose triglyceride
lipase (ATGL), hormone sensitive lipase (HSL) and mono-
glyceride lipase (MGL) (Fig. 1). Only a few studies have
looked at intensity-dependent lipase activity in skeletal
muscle. Watt et al. (2003) showed that HSL activity,
when measured in male subjects at three different exercise
intensities (30%, 60% and 90% of V̇O2,peak), were increased
in all trials and did not differ between exercise intensities.
Furthermore, HSL activation was shown to increase
in untrained subjects from rest to exercise at 70% of
V̇O2,peak and remained unchanged when increasing exercise
intensity to ∼90% of V̇O2,peak (Kjaer et al. 2000). These
observations are supported by our own findings that HSL
activity was activated by exercise even at low exercise
intensities (30% of V̇O2,peak) with no further increase in
activity at 60 and 87% of maximal oxygen uptake (Kiens
B. and Alsted TJ., unpublished data). Despite HSL being
activated by exercise, no significant hydrolysis of IMTG
was detected (Kiens B. and Alsted TJ., unpublished data).
This study is not the first to demonstrate dissociation
between HSL activation and IMTG hydrolysis. Watt
et al. (2004) showed that reduced plasma FA availability

during exercise, induced by nicotinic acid ingestion,
increased IMTG hydrolysis despite no HSL activation. An
explanation for a disassociation between lipase activity
and IMTG breakdown could be that allosteric regulators
of HSL (the influence of which is not measured in the
in vitro HSL activity assay) override the covalent regulation
of HSL by phosphorylation of different serine residues (for
review see Watt & Steinberg, 2008). Fatty acyl-CoA, an
allosteric inhibitor of HSL, may inhibit the in vivo HSL
activity especially during exercise at high intensity when
intracellular accumulation of FAs has been shown to occur
(Kiens et al. 1999). In the study by Watt et al. (2004),
the decline in plasma FA concentration by nicotinic acid
may have decreased the intramuscular fatty acyl-CoA
concentration thereby relieving the allosteric inhibition
of HSL and allowing for increased in vivo HSL activity.
It is, however, remarkable that nicotinic acid in the study
by Watt et al. (2004) on the one hand reduced lipolysis
in adipose tissue and on the other increased lipolysis
in skeletal muscle. These observations may give further
support to the view that lipolysis is regulated differently in
the two tissues (Watt & Steinberg, 2008). Although from
these observations it seem unlikely that IMTG breakdown
during high intensity exercise poses limitations for FA
oxidation, this warrants further studies.

Mitochondrial metabolism

Long chain FAs taken up into cells are activated in
the cytosol by reaction with CoA to yield long chain
fatty acyl-CoA, an ATP consuming process catalysed
by acyl-CoA synthetase (ACS) (Fig. 1). The active site
of ACS has been located to the cytosolic surface of
the peroxisomal endoplasmatic reticulum and outer
mitochondrial membranes (Coleman et al. 2000). It
was recently demonstrated in 3T3-L1 adipocytes that
long chain ACS is an integral membrane protein also
located in the plasma membrane (Gargiulo et al. 1999)
and it was suggested that incoming long chain FAs are
immediately esterified at the plasma membrane. This
efficient esterification will maintain a low intracellular
long chain FA concentration and contribute to uptake
of long chain FAs.

Regulation of long chain FA entry into mitochondria is
a highly regulated process, as acyl-CoA derivatives cannot
cross the mitochondrial inner membrane directly. This
is in contrast to short and medium chain FAs, which
passively diffuse across the mitochondrial membranes.
Long chain FAs first have to be converted to their
acylcarnitine form, a reaction catalysed by carnitine
palmitoyltransferase 1 (CPT-1) located at the outer
mitochondrial membrane (Fig 2). Mitochondrial CPT-1
exist in two isoforms: the liver-type (L-CPT1) and
muscle-type (M-CPT1). In skeletal muscle the M-CPT1

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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isoform is predominant (McGarry & Brown, 1997). The
importance of CPT-1 in long chain FA oxidation was
demonstrated when CPT-1 function was blocked by
etomoxir resulting in a marked decrease in FA oxidation
both in vivo and ex vivo (Hubinger et al. 1992; Dzamko
et al. 2008). In addition, when the human muscle isoform
of CPT-1 protein was electroporated into skeletal muscle
of rats, an increase in maximal CPT-1 activity of ∼30%
was paralleled by an increase of ∼24% in pamitoyl-CoA
oxidation in isolated muscle mitochondria (Bruce et al.
2007). Earlier findings demonstrated that CPT-1 was
potently regulated by malonyl-CoA (Bird & Saggerson,
1984) and a close relationship between malonyl-CoA
concentration in muscle and decreased FA oxidation
was observed in both humans and rats under resting
conditions (Bavenholm et al. 2000; Chien et al. 2000).
The formation of malonyl-CoA from acetyl CoA in skeletal
muscle is catalysed by acetyl-CoA carboxylase (ACC). One
type of regulation of ACC involves phosphorylation and
inactivation by 5′-AMP-activated protein kinase (AMPK).
During exercise AMPK and ACC phosphorylation are
increased, which results in AMPK activation and in turn
ACC inactivation (Richter & Ruderman, 2009). This will

hypothetically lead to decreased muscle malonyl-CoA
content during exercise and, in turn, increased CPT-1
activation, resulting in increased long chain FA oxidation.
However, FA oxidation measured at rest and during iso-
lated muscle contractions (Dzamko et al. 2008), and
during whole body exercise (Dzamko et al. 2008; Miura
et al. 2009) was similar in mice with a genetically reduced
AMPKα2 activity as in wild-type (WT) mice. These
findings were supported by O’Neill et al. (2011), who
demonstrated that FA oxidation during exercise, evaluated
by RER, was higher in mice with abolished AMPK activity
(muscle specific β1 and β2 double knockout (KO))
compared to WT mice, indicating that AMPK is not a
major regulator of FA oxidation during exercise in skeletal
muscle. Less genetic evidence is available on the role of
ACC2, the main isoform of ACC in muscle, in regulation
of FA oxidation. But ACC2 deletion in mice did not affect
malonyl-CoA content in muscle or RER under resting
condition (Choi et al. 2007; Olson et al. 2010), indicating
that either overcompensation by ACC1 had occurred
or other mechanisms were responsible for regulating
FA oxidation in these mice. The relationship between
malonyl-CoA and FA oxidation observed at rest is less

Figure 2. Schematic overview of a proposed interaction between fatty acid metabolism and glycolysis
in skeletal muscle during high intensity exercise
At high exercise intensity the high glycolytic rate will cause a production of acetyl CoA which exceeds the rate of the
Krebs cycle. Free carnitine acts as an acceptor of the acetyl groups forming acetylcarnitine, mediated by the enzyme
canitine acyltransferase. This leaves less free carnitine, substrate for CPT-1, whereby forming of acylcarnitine
will be reduced and less FA-acyl will be available for β-oxidation resulting in reduced FA oxidation. OMM,
outer mitochondrial membrane; IMM, inner mitochondrial membrane; CPT-1, carnitine palmitoyltransferase;
FA, fatty acids: CPT II, carnitine palmitoyltransferase II; PDC, pyruvate dehydrogenase complex; CAT, carnitine
acyltransferase.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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clear during exercise in humans. In a series of experiments
a discrepancy between malonyl-CoA concentrations and
FA uptake and FA oxidation in human subjects during
exercise has been demonstrated (Odland et al. 1996, 1998;
Dean et al. 2000; Roepstorff et al. 2005). When whole
body exercise intensity was increased from 65% to 90% of
V̇O2,peak in male subjects, muscle malonyl-CoA content
did not change, despite FA oxidation, determined by
RER, being markedly decreased (Odland et al. 1998). This
notion was supported by Dean et al. (2000), who showed
that increasing knee extensor exercise intensity from 60%
to 85% of leg work capacity and further until exhaustion
was accompanied by a reduction in muscle malonyl-CoA
content, despite RER values concomitantly increasing
from 0.84 to 0.99. More recent findings, where pre-exercise
muscle glycogen levels were manipulated to induced either
high or low FA oxidation during exercise at 65% of V̇O2,peak

(Roepstorff et al. 2005), showed marked differences in FA
oxidation during exercise without differences in muscle
malonyl-CoA content. Taken together, this suggests that
malonyl-CoA content is not the major regulator of FA
oxidation in working muscle. It should be noted that
it is unknown whether local changes in malonyl-CoA
concentration in compartments close to mitochondria
within the muscle, rather than whole muscle content, have
effects on FA oxidation.

Besides the effect of carnitine in mediating FA entry
into mitochondria, studies in the 1950s on blowfly muscle
revealed that carnitine also serves another important
metabolic role. The flight muscle from flies is one
of the richest sources of carnitine and at the same
time these insects do not oxidize FAs when in flight
(Childress et al. 1967). When the blowfly flight muscle was
studied under flight the concentration of acetylcarnitine
increased 4-fold on initiation of flight, which paralleled
the increase in pyruvate concentration (Childress et al.
1967). From these studies it was proposed that carnitine
could act as an acceptor of acetyl groups from acetyl-CoA,
by forming acetylcarnitine, a reaction catalysed by the
mitochondrial enzyme carnitine acetyltransferase (CAT),
when acetyl-CoA was generated faster than utilized by
the Krebs cycle. In this way, CoASH can be regenerated
permitting glycolysis to proceed to acetyl-CoA. These early
findings were later supported by findings in both animal
and human skeletal muscle. Indeed, it has been shown
in several studies in humans that with increasing exercise
intensities, muscle acetylcarnitine content was increased
(Sahlin, 1990; Constantin-Teodosiu et al. 1991; Odland
et al. 1998; van Loon et al. 2001) concomitantly with
a decrease in the free carnitine content (Sahlin, 1990;
Constantin-Teodosiu et al. 1991; van Loon et al. 2001).
In the review from Stephens et al. (2007), compiled
results from four different studies showed that a short
bout of exercise (4 min) at different exercise intensities
was followed by a gradual decrease in the vastus lateralis

muscle free carnitine content from ∼75% of the total
muscle carnitine pool at rest to ∼20% at 75–100%
V̇O2,peak. In addition, data revealed that acetylcarnitine
content accounted for the decrease in free carnitine
with high intensity exercise. On the other hand, at
low exercise intensities neither free carnitine nor acetyl-
carnitine content was changed compared to resting values
(Stephens et al. 2007). These findings further support
the notion that carnitine acts as the acceptor for the
acetyl groups, by forming acetylcarnitine, when the rate of
acetyl-CoA formation from glycolysis at high intensities
is in excess of its utilization by the Krebs cycle. On the
other hand, since CPT-1 activity is dependent on the
presence of carnitine (McGarry et al. 1983; Harris et al.
1987), a low muscle content of free carnitine is supposed
to reduce the activity of CPT-1. Consequently this will
lead to a diminished supply of long chain FA CoA to
β-oxidation, limiting long chain FA oxidation during high
intensity exercise. The importance for carnitine in long
chain FA oxidation in skeletal muscle is evident from the
findings of an 85% reduced carnitine content and a 75%
reduced FA oxidation in skeletal muscle of patients with
lipid storage myophathy compared with healthy controls,
despite similar levels of CPT-1 and palmityl thiokinase in
patients and control subjects (Engel & Angelini, 1973).
Thus, an increased availability of pyruvate, acetyl-CoA
formation, and ‘binding’ of the free carnitine during high
intensity exercise also provide a potential mechanism
whereby FA oxidation is down-regulated (Fig. 2). On
the other hand, K m of CPT-1 for carnitine in isolated
mitochondria from human skeletal muscle is ∼0.5 mM

(McGarry et al. 1983). Thus, with the usual fluctuations
in carnitine content in skeletal muscle of healthy humans
between 1 and 4 mM it is not expected to influence CPT-1
activity as CPT-1 would be saturated with carnitine at
all exercise intensities. However, partitioning of carnitine
between the cytosol and the mitochondrial matrix makes
it difficult to estimate the absolute carnitine concentration
near CPT-1 and furthermore extrapolation of in vitro
enzyme kinetics to in vivo conditions is fraught with
assumptions making it difficult to judge the relevance of
such measures.

Recently we have shown (Roepstorff et al. 2005) that
when pre-exercise muscle glycogen stores were high, FA
oxidation was reduced by 2.5-fold during 60 min of
moderate intensity exercise (65% V̇O2,peak) compared to
when pre-exercise glycogen levels were low. This was
paralleled by low free carnitine levels in muscle during the
high glycogen trial whereas the free carnitine content was
high during the low glycogen trial (Roepstorff et al. 2005).
These findings give support to the notion that a reduction
in cellular free carnitine will limit the ability of CPT-1
to transport long chain FAs into the mitochondria, and
thus also the rate of long chain FA oxidation at moderate
exercise intensities.

C© 2012 The Authors. The Journal of Physiology C© 2012 The Physiological Society
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In a recent study by Wall et al. (2011), 14 healthy
male volunteers were given carnitine supplementation
(together with carbohydrates) for 24 weeks resulting in
an increase in muscle total carnitine by 21%. This increase
in total carnitine content was linked to a 55% reduction in
muscle glycogen utilisation during exercise at 50% V̇O2,peak

compared with controls not supplemented with carnitine.
In addition, the study revealed an 80% greater muscle
free carnitine content and a 31% lower activity in the
pyruvate dehydrogenase complex (PDC) during exercise
after carnitine supplementation compared to control. This
suggests an increased FA oxidation during exercise at 50%
of V̇O2,peak, but this was unfortunately not measured in the
study. When exercise was subsequently increased to 80%
V̇O2,peak, no differences were obtained between the groups
in glycogen utilisation, but muscle lactate content was
∼44% lower in the carnitine supplemented trial than in the
control trial (Wall et al. 2011). These findings indicate that
at high intensities the formation of acetyl-CoA, probably
mostly generated from a high glycolytic flux, is captured
by carnitine and thereby prevents a product inhibition of
PDC activation, by an increased acetyl-CoA/CoASH ratio
(Cooper et al. 1975). Support for this are their findings
(Wall et al. 2011) of a greater activity in PDC (38%)
and a greater acetylcarnitine content (16%) in skeletal
muscle during exercise at 80% V̇O2,max in the carnitine
supplemented trial than in control. As RER or other
measurements of FA oxidation were not performed in the
study by Wall et al., it is not possible from these findings
to evaluate the influence of carnitine supplementation
on FA oxidation either at the moderate or at the high
exercise intensities. Thus, it cannot be ruled out that
high availability of carnitine might increase FA oxidation
during high intensity exercise as well.

A clue to understanding the regulation of FA oxidation
during high intensity exercise may be obtained from
comparison of metabolism during whole body exercise
to exercise with a limited muscle mass like the
knee-extensors. Whereas it is well established that FA
oxidation during exercise decreases at exercise intensities
above ∼65% of V̇O2,peak, as discussed above, different
results are obtained with one-legged knee-extensor
exercise (Dean et al. 2000; Helge et al. 2007). Thus,
when exercise was allocated to the knee-extensors,
plasma FA oxidation, measured by constant infusion
of [U-13C]palmitate, increased with increasing exercise
intensities from 25% up to 85% of maximal leg work
capacity (Helge et al. 2007). Furthermore, total FA
oxidation increased from rest to exercise and remained
unchanged during increasing exercise intensities (Helge
et al. 2007). In addition, Dean et al. (2000) showed (by
measuring RER) that FA oxidation was unchanged from
65 to 85% of knee-extensor maximum work capacity but
decreased by 34% compared to at 85% when exercise
intensity was increased to 100%. Thus when performing

exercise with a limited muscle mass it appears that muscle
is able to oxidize FA at much higher relative exercise
intensities than during bicycle ergometer exercise when
more and large muscle groups are involved. How is this
explained?

While this cannot be answered conclusively, we
offer the following hypothesis. During exercise with a
limited muscle mass at 80% of peak leg work capacity
there is hardly any increase in plasma catacholamine
concentrations compared to rest (Richter et al. 1988),
whereas substantial increases are observed when heavy
exercise is performed with more muscle mass (Galbo et al.
1975). The low hormonal response during knee-extensor
exercise may limit glycogen breakdown (Richter et al.
1982), and thus glycolytic flux, compared to heavy whole
body exercise and therefore limit the production of
acetylcarnitine. In consequence free carnitine availability
and therefore CPT-1 activity may be preserved better
than during whole body exercise. In addition, when
performing one-legged exercise, muscle blood flow is
excessive compared to flow during whole body exercise
(Saltin, 1985) and this ‘superperfusion’ is likely to create
conditions in the muscle that favour oxidative ATP
production, and thus limit increases in ADP and AMP.
This lesser disturbance in energy status of the cell will
in turn cause less stimulation of glycolysis. As mentioned
above, this again preserves free carnitine in the muscle and
therefore creates favourable conditions for FA oxidation.
This could explain why FA oxidation is maintained at
higher exercise intensities during knee-extensor exercise
compared with whole body exercise. In fact the metabolic
conditions in the muscle during one-legged exercise may
resemble conditions after endurance training where better
metabolic control is achieved and decreased glycolytic flux
leads to increased FA oxidation at the same absolute work
load (Holloszy & Coyle, 1984).

Conclusion

FA oxidation during exercise is subject to multiple possible
regulatory steps, ranging from adipose tissue lipolysis to
mitochondrial metabolism in skeletal muscle. However,
when focusing on limitations of FA oxidation in the
transition from moderate to higher intensity exercise,
one possibility could be product inhibition from the
β-oxidation pathway, but evidence for this is not sub-
stantial. It seems that the most attractive regulatory
candidate for FA oxidation is the muscle metabolite
carnitine, which is essential in CPT-1 regulation and,
in turn, FA oxidation. At high intensity exercise the
rapid glycolysis provides the mitochondria with excess
acetyl-CoA, which is buffered by free carnitine to form
acetylcarnitine. Accordingly a fall in muscle concentration
of free carnitine may reduce CPT-1 activity, and thus the
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ability to transport FA into the mitochondria and therefore
also the rate of FA oxidation. In this way, rapid glycogen
breakdown and glycolysis are suggested to have a major
impact on inhibiting FA oxidation. The absence of any
other rigorously identified mechanisms for decreasing
FA oxidation during high intensity exercise makes us
believe that carnitine is the major direct regulator of
FA oxidation in the transition from moderate to higher
intensity exercise.
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