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SUMMARY

Rediscovery of cold-activated brown adipose tissue
(BAT) in humans has boosted research interest in
identifying BAT activators for metabolic benefits. Of
particular interest are cytokines capable of fat
browning. Irisin, derived from FNDC5, is an exer-
cise-induced myokine that drives brown-fat-like
thermogenesis in murine white fat. Here we explored
whether cold exposure is an afferent signal for irisin
secretion in humans and compared it with FGF21,
a brown adipokine in rodents. Cold exposure
increased circulating irisin and FGF21. We found an
induction of irisin secretion proportional to shivering
intensity, in magnitude similar to exercise-stimulated
secretion. FNDC5 and/or FGF21 treatment upregu-
lated human adipocyte brown fat gene/protein
expression and thermogenesis in a depot-specific
manner. These results suggest exercise-induced
irisin secretion could have evolved from shivering-
related muscle contraction, serving to augment
brown fat thermogenesis in concert with FGF21.
Irisin-mediated muscle-adipose crosstalk may re-
present a thermogenic, cold-activated endocrine
axis that is exploitable in obesity therapeutics devel-
opment.

INTRODUCTION

Cold-induced thermogenesis (CIT) is the increase in heat pro-

duction in response to acute ambient temperature reduction. It

comprises nonshivering thermogenesis (NST) and shivering

thermogenesis (ST). In rodents, the chief tissue mediating NST

is brown adipose tissue (BAT), which releases heat through the

action of uncoupling protein 1 (UCP1) (Cannon and Nedergaard,

2004). Heat demand not met by NST recruits ST, thereby gener-

ating heat from muscle contractions. Long-term cold exposure

reduces shivering, conceivably a result of NST enhancement

from cold acclimatization (Davis, 1961). In humans, the rediscov-
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ery of cold-activated BAT suggests a possible regulatory role of

BAT in NST (Cypess et al., 2009; Saito et al., 2009; van Marken

Lichtenbelt et al., 2009; Virtanen et al., 2009). However, the phys-

iologic cues orchestrating NST and ST recruitment are unclear.

While adequate shelter and clothing in modern society have

minimized the hazards of cold temperatures, the obesity

epidemic has reignited interest into exploring whether harness-

ing BAT may benefit weight control (Yoneshiro et al., 2013).

Activated BAT may contribute up to 20% of CIT following mild

cold exposure (Chen et al., 2013), representing a proportion of

total energy expenditure (EE) sufficient to impact long-term

energy balance. Identification of BAT endocrine activators may

open new directions in obesity therapeutics development (Lee

et al., 2013b).

Irisin is an exercise-induced myokine that is secreted into the

circulation following proteolytic cleavage from its cellular form,

fibronectin-type III domain-containing 5 (FNDC5) (Boström

et al., 2012). It reverses diet-induced obesity and diabetes by

stimulating thermogenesis in rodents through increasing brown

adipocyte-like cell abundance (brite [Petrovic et al., 2010]/beige

[Wu et al., 2012] adipocytes) within white fat. As it appears par-

adoxical that exercise should increase secretion of a thermo-

genic hormone, it has been hypothesized that the mechanism

evolved from shivering-related muscle contraction to augment

NST through BAT expansion (Boström et al., 2012).

In this study, we tested this hypothesis by investigating the

impact of cold exposure in healthy adults on irisin secretion

and compared its excursion with the sympatho-thyroid-adrenal

axes, principal regulators of CIT (Celi et al., 2010), as well as

fibroblast growth factor 21 (FGF21), a recently identified brown

adipokine that predicts NST response in humans (Lee et al.,

2013a, 2013c). Finally, we examined in vitro the bioenergetic

profiles of FNDC5- and FGF21-treated human adipocytes to

determine their thermogenic significance.

RESULTS AND DISCUSSION

Irisin Detection in Human Serum
Circulating irisin, cleaved from FNDC5, is heavily glycosylated,

and multiple bands are visible on serum immunoblot against

anti-FNDC5 antibody (Boström et al., 2012). Because of the

recent controversy over the circulating form of irisin (Erickson,
c.
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Figure 1. Validation of Immunoblot-

Detected Irisin by Mass Spectrometry

(A) Immunoblot of paired serum samples following

albumin/immunoglobulin depletion against anti-

FNDC5 antibody revealed multiple distinct bands

(a–f). PNGase treatment reduced size of band e

(�32 kDa) to band f (�24 kDa).

(B) Shown is the amino acid sequence of full-length

FNDC5 with the secreted irisin segment under-

lined. Mass spectrometry analysis of all bands (a–f)

identified a specific peptide (in red), unique to irisin,

only in band e and band f, with molecular weights

matching those of glycosylated and deglycosy-

lated irisin, respectively.

(C) Shown are representative immunoblots of

serum irisin for fold change quantification from two

subjects during cold exposure, maximal exercise,

and submaximal exercise. Subject 1 shivered

during cold exposure, while subject 2 did not.

Accordingly, deglycosylated irisin band (�24 kDa)

was stronger at the end of cold exposure only in

subject 1. In contrast, irisin band was stronger after

submaximal exercise in both subjects. Full-sized

blots are shown in Figure S1.

(D–F) Graphical representation of serum irisin fold

changes during cold exposure, maximal, and

submaximal exercise tests, respectively, of all ten subjects. ‘‘Post’’ indicates the average band intensity of irisin extracted from themid and final blood samples of

each clinical test. Similar results were obtained when analysis was conducted comparing irisin band intensity between baseline and final sample alone. Irisin level

rose significantly following sub-maximal exercise (F) and trended higher (p = 0.07) after maximal exercise (E). Irisin levels increased only in the seven subjects who

shivered (closed circles, D), but not those who did not (open circles, D).

(G) Neutralization of anti-FNDC5 antibody by FNDC5 recombinant protein. FNDC5 antibodymixture in increasing ratio resulted in quenching of western signal in a

dose-dependent manner by excess FNDC5 recombinant protein. *p < 0.05. Data are presented as mean ± SD.
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2013), we first determined the identity of FNDC5-immuno-

reactive bands detectable in human serum by mass spectrom-

etry (MS).

Consistent with previous reports, immunoblot of albumin/

immunoglobulin-depleted serum revealed multiple bands reac-

tive to anti-FNDC5 antibody. Deglycosylation reduced the size

of a 32 kDa band to 24 kDa, corresponding to reportedmolecular

weights (MWs) of glycosylated and deglycosylated irisin, respec-

tively (Figure 1A) (Boström et al., 2012; Schumacher et al., 2013).

MS analysis identified a unique peptide, mapped to the known

sequence of irisin, only within the 32 kDa and 24 kDa bands

(Figure 1B). These results thus validated immunoblot identifica-

tion of circulating irisin in humans. To further ascertain specificity

of antibody used, we also demonstrated successful quenching

of irisin signal by excess recombinant protein (Figure 1G).

Exercise Increases Serum Irisin Levels in Humans
To understand the interrelationships between exercise, cold

exposure, and irisin, we compared irisin secretion in ten healthy

adults (four females, 27 ± 5 years old, body mass index [BMI]

22 ± 2 kg/m2, body fat (BF) 24% ± 9%) following graded, step-

wise cold exposure (27�C–12�C, see Figure S1 available online)

with two forms of standard exercise tests: exercise on cycloerg-

ometer to maximal capacity (VO2max) and submaximal exercise

test at 40% VO2max for 1 hr.

Serum irisin levels trended higher (p = 0.07) after maximal

exercise (Figures 1C and 1E). After 60 min of submaximal exer-

cise, irisin levels rose by 3.1- ± 2.8-fold (p < 0.05) (Figures 1C

and 1F). These results thus replicated the known stimulatory

effect of exercise on irisin secretion (Boström et al., 2012; Huh
Cell M
et al., 2012). The greater irisin increase during submaximal

exercise compared to maximal exercise suggests endurance

exercise maybe a more potent stimulus of irisin secretion,

consistent with the finding of higher FNDC5 expression in oxida-

tive versus glycolytic muscle fibers (Wrann et al., 2013).

Shivering Is an Afferent Signal of Irisin Secretion
We next determined the impact of cold temperature on irisin

changes. Upon cold exposure, skin temperature decreased in

all subjects (p < 0.0001) while core temperature was preserved

(Table 1; Figure 2A). Arm-to-hand, skin-to-core, and supracla-

vicular-to-chest temperature gradients increased by 13% ±

18% (p = 0.01), 45% ± 15% (p < 0.0001), and 4% ± 3% (p <

0.0001), signifying vasoconstrictive, insulative, and thermo-

genic responses, respectively. EE rose by 48% ± 37% (p <

0.01), representing CIT response (Figure 2A). Seven subjects

reported shivering, and shivering activity, quantified by surface

electromyography (EMG), increased during cold exposure (p <

0.01) (Table 1). The increase in EMG activity was 88% ± 80% in

individuals who shivered and 13% ± 9%, among those who did

not (p < 0.05). Our cooling protocol thus elicited the full spec-

trum of CIT response, allowing the interrogation of irisin-CIT in-

terrelationships. Irisin changes correlated the strongest with

shivering among all CIT components (Table S1). Circulating iri-

sin rose in the seven subjects who shivered (Figures 1C and

1D), and changes in irisin levels correlated positively with shiv-

ering activity (r = 0.91, p < 0.001) (Figure 2B). To ensure

accuracy of our quantification, we also demonstrated con-

cordant irisin changes measured with a commercially available

irisin enzyme-linked immunosorbant assay (Figures 2E and
etabolism 19, 302–309, February 4, 2014 ª2014 Elsevier Inc. 303



Table 1. Physiologic Changes during Cold Exposure and Hormonal Profile during Cold Exposure and Exercise Tests in Ten Subjects

Physiologic Variables

Body Temperature (�C) 27�C 18�C 16�C 14�C 12�C Trend p Value

Core 36.9 ± 0.2 36.9 ± 0.2 36.9 ± 0.2 36.9 ± 0.2 36.9 ± 0.2 0.65

Skin 32.1 ± 0.5 31.7 ± 0.7 31.1 ± 0.8 30.7 ± 0.9 30.0 ± 1.0 <0.0001

Gradient, core-to-skin 4.5 ± 0.8 4.8 ± 0.9 5.4 ± 1.1 5.9 ± 1.2 6.5 ± 1.2 <0.0001

Gradient, arm-to-hand �6.7 ± 1.7 �7.1 ± 1.8 �7.4 ± 1.8 �7.2 ± 1.8 �7.3 ± 1.5 0.01

Gradient, supraclavicular-to-chest 1.04 ± 0.03 1.05 ± 0.03 1.06 ± 0.04 1.07 ± 0.05 1.09 ± 0.06 <0.0001

Resting EE (kcal/day) 1,488 ± 196 1,731 ± 337 1,926 ± 673 2,100 ± 785 2,235 ± 738 0.007

Respiratory quotient 0.78 ± 0.03 0.85 ± 0.07 0.79 ± 0.07 0.77 ± 0.07 0.79 ± 0.08 0.001

Surface electromyography (310�6 RMS) 2.5 ± 5.7 3.1 ± 2.1 4.0 ± 4.0 4.7 ± 3.6 4.9 ± 3.3 0.044

Hormonal Variables

Cold Exposure Maximal Exercise Submaximal Exercise

Baseline End Baseline End Baseline End

Epinephrine (pg/ml) 38 ± 25 110 ± 73a 237 ± 418 300 ± 316 180 ± 406 311 ± 558 a

Norepinephrine (pg/ml) 658 ± 306 1,101 ± 449a 727 ± 264 1,568 ± 541a 714 ± 173 974 ± 209a

Glucose (mg/dL) 84 ± 3 86 ± 2 91 ± 6 117 ± 22a 87 ± 4 90 ± 10

Insulin (U/L) 4.2 ± 1.1 5.3 ± 1.1 6.8 ± 3.6 21.4 ± 22.6a 6.6 ± 3.5 7.9 ± 5.2

HOMA IR 1.0 ± 0.8 1.3 ± 0.8 1.5 ± 0.9 6.5 ± 6.7a 1.4 ± 0.8 1.8 ± 1.2

NEFA (mEq/L) 0.55 ± 0.07 0.57 ± 0.07 0.49 ± 0.19 0.45 ± 0.19 0.47 ± 0.23 0.65 ± 0.22a

TSH (mIU/L) 1.9 ± 0.3 2.1 ± 0.3 2.1 ± 0.7 2.5 ± 0.9a 1.9 ± 0.6 1.9 ± 0.7

Free T4 (ng/dL) 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1

Free T3 (pg/dL) 320 ± 17 346 ± 13 299 ± 43 296 ± 47 312 ± 45 311 ± 41

Total T3 (ng/dL) 134 ± 22 139 ± 17 115 ± 29 114 ± 16 121 ± 23 117 ± 17

ACTH (pg/ml) 17 ± 9 19 ± 6 27 ± 16 156 ± 133a 19 ± 10 37 ± 31a

Cortisol (mg/dL) 12 ± 3 15 ± 5 16 ± 5 18 ± 6 14 ± 4 16 ± 5

FGF21 (pg/ml) 129 ± 76 98 ± 90 135 ± 80 102 ± 97 119 ± 79 97 ± 85

Data are presented as mean ± SD.
ap < 0.05 compared to baseline.

Cell Metabolism

Cold-Induced Human BAT Activators
S1D–S1F), which has been validated against immunoblotting

(Wen et al., 2013).

As exercise is the only known activator of irisin secretion, we

compared cold- and exercise-induced irisin changes. The in-

crement in irisin was similar during the two tests (Figure 2C).

However, the increase in EE was significantly greater during

maximal exercise, compared to cold exposure (9.8- ± 2.4-fold

versus 1.5- ± 0.4-fold, p < 0.0001). The dissociation between

irisin and EE responses suggests additional cold-specific sig-

nals, unrelated to muscle contraction, potentiating irisin secre-

tion during shivering. As NST, mediated by BAT (Cannon and

Nedergaard, 2004) and muscle (Bal et al., 2012), is activated

with ST, we explored whether FGF21, a brown adipokine in

rodents (Chartoumpekis et al., 2011; Hondares et al., 2011)

and humans (Lee et al., 2013c), relates to shivering-induced irisin

secretion.

Distinct Involvement of Irisin and FGF21 during
Shivering and Nonshivering Thermogenesis
In agreement with known diurnal reduction in circulating FGF21

levels in humans (Yu et al., 2011), FGF21 concentration trended

lower during all three tests (cold exposure and exercise tests)

undertaken between 8:00 and 10:00 a.m. (Table 1). Greater

FGF21 reduction was associated with more intense shivering,
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although it did not reach significance (p = 0.08) (Figure 2D).

We interpret a greater reduction in FGF21 levels as lesser

FGF21 secretion, indicating a lower NST response (Lee et al.,

2013a) and leading to ST recruitment for additional heat genera-

tion. This is corroborated by a positive correlation observed

between supraclavicular skin temperature (i.e., an index of BAT

activity [Lee et al., 2011]) and FGF21 changes (Table S1;

Figure 2F). To further substantiate our interpretation of cold-

induced FGF21 secretion, we undertook two additional ex-

periments in separate groups of subjects to characterize (1)

relationships between BAT and FGF21 and (2) temperature de-

pendency of FGF21 diurnal rhythm.

First, to elucidate whether BAT is a significant source of cold-

augmented FGF21 secretion, we profiled FGF21 excursions in

five men (21 ± 2 years old; BMI, 22 ± 1 kg/m2; BF, 21% ± 2%)

stratified to BAT status during 5 hr of either mildly cold, non-

shivering condition (19�C) versus thermoneutrality (24�C) (Fig-
ures 2G and 2H). FGF21 diurnal reduction was blunted at 19�C
in the group as a whole by 23% ± 17% (p < 0.05). However,

the blunting effect was markedly greater in BAT-positive,

compared to BAT-negative, subjects (Figures 2K and 2L), trans-

lating to a total FGF21 output more than 6-fold higher in BAT-

positive individuals. Since the subjects were of similar age and

leanness and differed only by BAT status, these associative
c.



Figure 2. Relationship between Irisin, FGF21, BAT, and Temperature

Cold exposure resulted in reduction in skin temperature (open circles, A), accompanied by a rise in energy expenditure (EE) (closed circles), both reaching

significance from 16�C to 12�C. Panels (B) (by immunoblot) and (E) (by ELISA) show positive associations between irisin and EMG fold changes during cold

exposure. Panel (C) compares irisin and EE fold changes during cold exposure with maximal exercise test. Changes in FGF21 levels correlated negatively with

shivering (D) but positively with thermogenic response (TR; difference between supraclavicular skin and chest T�C) (F). In (G) and (H), representative PET-CT

images of BAT-positive (n = 3) and -negative (n = 2) individuals are shown, respectively (BAT in red). FGF21 diurnal reduction was more markedly blunted in BAT-

positive (solid lines) compared to BAT-negative (dashed lines) individuals at 19�C (L) versus 24�C (K). Panels (I) and (J) compared FGF21 changes (n = 5)measured

between 8 and 10 a.m. at either warm (27�C) or shivering (12�C) conditions. FGF21 reduction was significantly blunted in the cold. *p < 0.05 compared to warm

condition; #p < 0.001 compared to cold exposure. Data are presented as mean ± SD.
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results support BAT as a source of FGF21 during cold exposure

in humans.

Second, to verify that FGF21 diurnal rhythm is indeed temper-

ature sensitive, we measured FGF21 changes in another five

men (26 ± 6 years old; BMI, 23 ± 2 kg/m2; BF, 19% ± 3%) under

the same shivering-inducing cold exposure employed in the

main study but on a separate day exposed the same subjects

to a warm temperature (27�), during which FGF21 wasmeasured

at matching time points. Cold exposure blunted FGF21 diurnal

reduction by 28% ± 23% (p = 0.02) (Figures 2I and 2J). Pooling

the results in these five subjects with the ten subjects originally

studied, we observed a significant positive association between

FGF21 diurnal reduction and shivering intensity (r = 0.53, p <

0.05).

Collectively, our findings indicate concerted stimulated secre-

tion of FGF21 and irisin during NST and ST, respectively. In other

words, shivering stimulates irisin secretion in a FGF21-primed

milieu, through a mechanism mimicked by muscle contraction

during exercise, which offers a plausible reconciliation for the
Cell M
paradox of why exercise, an energy-dissipating process, should

stimulate the release of a thermogenic hormone.

FNDC5/FGF21 Induce Expression of Beige Gene
Transcriptome in Human Neck Adipocytes
These results led us to probe the biological significance under-

lying enhanced irisin and FGF21 secretion during cold exposure.

We hypothesize the two hormones are cold activated to boost

whole-body thermogenic capacity by switching on brown-fat-

like program in white fat. We thus examined in vitro the bio-

energetic profiles of FNDC5- and FGF21-treated primary human

adipocytes established from neck fat biopsies, a location known

to be enriched with beige adipocytes.

While stimulated beige adipocytes manifest thermogenic

capacity similar to that of classic brown adipocytes, they are

characterized by a distinct gene signature (Cypess et al., 2013;

Jespersen et al., 2013; Sharp et al., 2012; Wu et al., 2012). We

therefore first determined the impact of FNDC5 and/or FGF21

treatment on classic brown and beige gene expression in human
etabolism 19, 302–309, February 4, 2014 ª2014 Elsevier Inc. 305



Figure 3. Effects of FNDC5 and/or FGF21 Treatment on Gene/Protein Expression and Bioenergenetics of Neck Adipocytes

(A) Effects of FGF21 and/or FNDC5 treatment on BAT/beige/white gene markers in neck adipocytes (n = 6). UCP1 protein was absent in PBS-treated adipocytes

but was detected following FGF21 and/or FNDC5 treatment (B). UCP1 protein was highest in adipocytes treated with dual FGF21/FNDC5. Neck adipocytes

displayedmultilobulated lipid droplets (403), similar before and after treatment (C, F+F = FNDC5+FGF21 treatment). Expression of FABP4, a general adipogenic

gene, was not different following treatment (D). Induction of UCP1 was accompanied by upregulation of basal (F), oligomycin-insensitive, maximal uncoupled (G),

and norepinephrine-induced (E) oxygen consumption, most robust in dual FGF21/FNDC5-treated adipocytes (n = 4). (H) Infrared thermographic images of

adipocytes in microplates treated with PBS, FGF21, and/or FNDC5 (n = 4). The temperature scale showed color representation of temperature variation. Heat

production was increased in the basal state by FNDC5 but not FGF21. Addition of norepinephrine (NE) increased heat production in increasing magnitude in

FGF21-, FNDC5-, and dual FGF21/FNDC5-treated adipocytes. These results are displayed in graphical format in (I). *p < 0.05 compared to PBS; #p < 0.05

compared to FNDC5- or FGF21-treated adipocytes; cp < 0.05 compared to FGF21-treated adipocytes. Data are presented as mean ± SD.
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neck adipocytes. FNDC5 and/or FGF21 treatment increased

general BAT and beige gene expression without altering those

belonging to the classic brown fat lineage (Figure 3A). UCP1

protein, absent in untreated adipocytes, became strongly

expressed following FNDC5 and/or FGF21 treatment (Figure 3B).

Pre- and posttreatment adipocytes displayed similar mor-

phology, lipid accumulation, and general adipogenic gene

expression (Figures 3C and 3D), indicating thermogenic gene

upregulation was not a result of more efficient differentiation.

Bioenergetic Activation of Human Neck Adipocytes by
FNDC5/FGF21
We next investigated the functional impact of FNDC5 and FGF21

on adipocyte thermogenic function. We chose a treatment dura-
306 Cell Metabolism 19, 302–309, February 4, 2014 ª2014 Elsevier In
tion of 6 days, as guided by previous studies reporting a reduc-

tion of shivering in cold acclimatized humans after 1 week (Davis,

1961). FNDC5 and/or FGF21 enhanced adipocyte basal oxygen

consumption rate (OCR) (Figure 3F), as measured using an

extracelluar fluid bioanalyzer. Pharmacological interrogation of

mitochondrial respiration revealed augmentation of both forms

of respiratory uncoupling (oligomycin-insensitive and maximal)

by FNDC5 and FGF21 treatment (Figure 3G). To mimic cold

exposure in vitro, wemeasured norepinephrine-induced thermo-

genesis. While untreated adipocytes did not respond to nor-

epinephrine, FNDC5 and FGF21 both induced a robust increase

in OCR upon norepinephrine exposure (Figure 3E) and thus

recapitulated the observed cold-induced hormonal response

in vivo. Combined FNDC5/FGF21 treatment produced greater
c.
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responses than either hormone alone (Figure 3). Treating adi-

pocytes with irisin instead of FNDC5 resulted in a similar extent

of fat browning on gene, protein, and functional levels

(Figures S2A and S2C–S2E), consistent with previous findings

in murine fat cells (Wu et al., 2012), and suggests both FNDC5

and irisin in the circulation could be biologically active at adipose

tissue.

FNDC5/FGF21 Increases Human Neck Adipocyte Heat
Production
As the primary function of BAT is to generate heat, we next quan-

tified heat production from adipocytes directly by infrared ther-

mography (IRT) (Figure S2G). FNDC5 treatment enhanced

adipocyte heat production dose dependently (Figures 3H and

3I), which was further augmented by norepinephrine. In contrast,

FGF21 increased heat production only after norepinephrine

exposure. Additive effects were again observed following com-

bined FNDC5/FGF21 treatment.

Taken together, these in vitro experiments provide mecha-

nistic insight into our in vivo observations. It is conceivable that

shivering-stimulated irisin, in concert with FGF21, phenotypically

transforms white adipocytes to BAT-like cells to expand overall

thermogenic capacity. This heat-generating hormonal response

may confer an evolutionary advantage in the defense against

environmental hypothermic challenges by boosting the more

energy-efficient NST response over shivering.

Fat Depot-Specific Effects of FNDC5/FGF21
From a clinical perspective, a 2- to 3-fold increase in adipocyte

OCR following FNDC5/FGF21 treatment, if extrapolated to the

whole-body EE level, could be substantial. However, the in vivo

relevance is dependent on the generalizability of our findings to

other fat depots. We therefore repeated FNDC5/FGF21 experi-

ments in primary human subcutaneous and visceral adipocytes.

FNDC5/FGF21 enhanced BAT-like thermogenic program in

subcutaneous but not omental adipocytes, and the magnitude

of thermogenic activation was less compared to those observed

in neck adipocytes (Figures S3 and S2F). Beige gene expression

was either low (subcutaneous adipocytes) or absent (omental

adipocytes). In rodents, irisin treatment only increased UCP1 in

beige fat gene-expressing adipocytes (Wu et al., 2012). Lower

or absent beige gene expression in subcutaneous and omental

adipocytes may account for the modest or lack of response of

these adipocytes to FNDC5/FGF21.

Metabolic Significance and Clinical Implications
Although our sample size is relatively small, our results are

physiologically and clinically relevant. First, they uncover an

intriguing evolutionary interconnection between exercise and

shivering, juxtaposing at the muscle-fat interface through

cold-induced endocrine BAT activators. As irisin levels were

higher in shivering subjects, we hypothesize muscle to be the

main contributor to the observed irisin rise, although adipose-

derived irisin cannot be excluded (Roca-Rivada et al., 2013).

Second, while the sympathetic nervous system (SNS) is the

best-known mediator of CIT, recent evidence points to the ex-

istence of specific cold-induced neuroendocrine signals in ani-

mals, whose actions are highly fat specific, without undesirable

global SNS activation (Villarroya and Vidal-Puig, 2013). Our
Cell M
study provides evidence supporting similar fat browning capac-

ity of two of these cytokines, irisin and FGF21. Third, our irisin

detection validation clarifies recent concerns over specificity

of irisin immunoblotting (Erickson, 2013). Although the antibody

used recognizes a peptide present in FNDC5, which is theoret-

ically lost during irisin-specific proteolytic cleavage, it is

possible that shivering induces release of FNDC5 fragments

that harbor the antibody-reactive peptide. While the dynamics

of irisin secretion remain to be clarified in future studies, identi-

fication of the same peptide sequence shared by circulating iri-

sin (shown in our clinical study) and recombinant FNDC5/irisin

proteins used in our in vitro experiments offers renewed

perspective over controversy on the relevance of irisin in human

biology (Atherton and Phillips, 2013). Fourth, our finding of fat

depot-specific browning by FNDC5 suggests adipocyte brown-

ing potential may impact response to FNDC5/irisin and may

account for negative results utilizing solely subcutaneous adipo-

cytes (Raschke et al., 2013). Finally, long-term maintenance of

regular exercise is challenging, and natural human tendency

for thermal comfort limits cold exposure in contemporary soci-

ety. Irisin and FGF21 may represent endocrine mimics of these

thermogenic stimuli and are therefore potential therapeutic tar-

gets to attain weight control and to improve overall metabolic

profile.

EXPERIMENTAL PROCEDURES

Clinical Studies

Healthy volunteers provided written informed consent. The NIDDK-NIAMS

institutional review board approved the studies (http://clinicaltrials.gov,

NCT00521729 and NCT01730105). We conducted three sets of studies. (1)

Main Study consisted of three experiments: cold exposure, maximal, and

submaximal exercise tests; (2) PET-CT Study involved FGF21 profiling in

volunteers stratified to BAT status; and (3) Temperature Study determined

temperature dependence of FGF21 diurnal rhythm.

Main Study

These tests allowed comparison of hormone/substrate profiles during active

muscle contractions with cold-induced shivering. Volunteers were admitted

after an overnight fast (September 2012–March 2013) for each test, performed

at least 3 days apart.

Cold Exposure Test

Ten volunteers wearing hospital scrubs rested in beds in a room at 24�C.
Two water-infused thermoblankets (Gaymar Medi Therm) were used to

adjust rapidly temperature exposure (Figure S1A). Thirty minutes of resting

EE measurement was obtained by indirect calorimetry when water

temperature was at 27�C, after which it was cooled to 18�C, then further

lowered by 2�C every 3 min until 12�C was reached. EE measurement

continued throughout this period, and the test concluded after 5 min at

12�C. Shivering intensity was measured by surface electromyography (EMG)

(Trigno, DelSys Inc.).

Exercise Tests

Maximal exercise test was performed on a mechanically braked cycle ergom-

eter (Ergomedic 839E, Monark Exercise). A stepwise incremental exercise test

was performed to assess maximal aerobic capacity (VO2max) using breath-by-

breath analysis. For the submaximal exercise test, volunteers cycled for 1 hr at

an intensity of 40% of VO2max.

Laboratory Measurements

Three blood samples were obtained during each test for hormone/substrate

measurements: baseline, 5 min after the start of cooling or maximal exercise,

and at the conclusion of the test. For the submaximal exercise test, samples

were obtained at baseline, 30 min into, and at the end of the test. Serum irisin

wasmeasured bywestern blotting (Boström et al., 2012) and plasma FGF21 by

enzyme immunoabsorbant assays.
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PET-CT Study

Five subjects were studied after an overnight fast. They were exposed to either

24 hr of mild cold (19�C) or thermoneutral temperature (24�C). Blood samples

were obtained at 08:00, 09:00, 10:00, 12:00, and 13:00, corresponding to 0, 1,

2, 4, and 5 hr after exposure to testing temperature. FGF21 levels were

measured by same ELISA as in Main Study. At the end of 24 hr exposure to

19�C, each subject received a 5 mCi dose of 18flurodeoxyglucose (FDG) at

08:00 and underwent PET-CT scanning.

Temperature Study

Five subjects underwent the same cold exposure study as those in Main

Study. Blood samples were obtained at baseline and at the end of the cold

exposure study for FGF21 measurements and correlation with shivering activ-

ity. On a separate day, subjects returned and were exposed to a constant

warm temperature at 27�C for the same duration as the cold exposure testing

period. Blood samples were obtained at matching time points for FGF21 mea-

surements to directly compare with levels obtained during cold exposure.

In Vitro Studies

Adipocyte Culture

Thermogenic effects of FNDC5/FGF21 were tested on primary adipocytes

established from human cervical, subcutaneous, and omental fat, as previ-

ously described (Lee et al., 2013c).

Gene/Protein Expression and Thermogenesis

Standard techniques were used for RNA/protein extraction and analysis by

semiquantitative real-time PCR and immunoblotting. Cellular respiration was

measured by XF24-3 extracellular flux analyzer (Seahorse Bioscience). Heat

production was measured by IRT (FLIR Systems), as previously described

(Lee et al., 2013c).

Additional clinical/laboratory experimental details and PET-CT scanning

analytical methods are available in the Supplemental Information.

Statistical Analysis

Statistical analysis was performed using SPSS 20.0 (SPSS, Inc.). Data are

expressed as mean ± SD. Comparisons between results during graded cold

exposure (Main Study) and FGF21 time course (PET-CT Study) were per-

formed using repeated-measure ANOVA with Bonferroni’s correction. Paired

t test was used for comparison of measurements at 24�C and 19�C. Data
not normally distributed were log transformed before analysis but are pre-

sented in the text nontransformed. Pearson correlation coefficients were

used to examine linear relations between variables. Areas under the curve

were calculated using the trapezoidal rule. An a error of 0.05 was considered

the threshold for statistical significance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

one table, and three figures and can be found with this article at http://dx.

doi.org/10.1016/j.cmet.2013.12.017.
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